首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporin-1 (AQP1) is the prototype integral membrane protein water channel. Although the three-dimensional structure and water transport function of the molecule have been described, the physical interactions between AQP1 and other membrane components have not been characterized. Using fluorescein isothiocyanate-anti-Co3 (FITC-anti-Co3), a reagent specific for an extracellular epitope on AQP1, the fluorescence photobleaching recovery (FPR) and fluorescence imaged microdeformation (FIMD) techniques were performed on intact human red cells. By FPR, the fractional mobility of fluorescently labeled AQP1 (F-alphaAQP1) in the undeformed red cell membrane is 66 +/- 10% and the average lateral diffusion coefficient is (3.1 +/- 0.5) x 10(-11) cm2/s. F-alphaAQP1 fractional mobility is not significantly affected by antibody-induced immobilization of the major integral proteins band 3 or glycophorin A, indicating that AQP1 does not exist as a complex with these proteins. FIMD uses pipette aspiration of individual red cells to create a constant but reversible skeletal density gradient. F-alphaAQP1 distribution, like that of lipid-anchored proteins, is not at equilibrium after microdeformation. Over time, approximately 50% of the aspirated F-alphaAQP1 molecules migrate toward the membrane portion that had been maximally dilated, the aspirated cap. Based on the kinetics of migration, the F-alphaAQP1 lateral diffusion coefficient in the membrane projection is estimated to be 6 x 10(-10) cm2/s. These results suggest that AQP1 lateral mobility is regulated in the unperturbed membrane by passive steric hindrance imposed by the spectrin-based membrane skeleton and/or by skeleton-linked membrane components, and that release of these constraints by dilatation of the skeleton allows AQP1 to diffuse much more rapidly in the plane of the membrane.  相似文献   

2.
Frog rod outer segments were labeled with the sulfhydryl-reactive label iodoacetamido tetramethylrhodamine. The bulk of the label reacted with the major disk membrane protein, rhodopsin. Fluorescence photobleaching and recovery (FPR) experiments on labeled rods showed that the labeled proteins diffused rapidly in the disk membranes. In these FPR experiments we observed both the recovery of fluorescence in the bleached spot and the loss of fluorescence from nearby, unbleached regions of the photoreceptor. These and previous experiments show that the redistribution of the fluorescent labeled proteins after bleaching was due to diffusion. The diffusion constant, D, was (3.0 +/- 10(-9) cm2 s-1 if estimated from the rate of recovery of fluorescence in the bleached spot, and (5.3 +/- 2.4) x 10(-9) cm2 s-1 if estimated from the rate of depletion of fluorescence from nearby regions. The temperature coefficient, Q10, for diffusion was 1.7 +/- 0.5 over the range 10 degrees--29 degrees C. These values obtained by FPR are in good agreement with those previously obtained by photobleaching rhodopsin in fresh, unlabeled rods. This agreement indicates that the labeling and bleaching procedures required by the FPR method did not significantly alter the diffusion rate of rhodopsin. Moreover, the magnitude of the diffusion constant for rhodopsin is that to be expected for an object of its diameter diffusing in a bilayer with the viscosity of the disk membrane. In contrast to the case of rhodopsin, FPR methods applied to other membrane proteins have yielded much smaller diffusion constants. The present results help indicate that these smaller diffusion constants are not artifacts of the method but may instead be due to interactions the diffusing proteins have with other components of the membrane in addition to the viscous drag imposed by the lipid bilayer.  相似文献   

3.
Cell surfaces are often heterogeneous with respect to the lateral distribution and mobility of membrane components. Because lateral mobility is related to membrane structure, measurement of a particular component's local diffusion coefficient within a distinct surface region provides useful information about the formation and maintenance of that region. Many structurally interesting cell surface features can be described as narrow tubular projections from the body of the cell. In a companion paper, we consider the thin "tethers" that can be mechanically drawn from the red blood cell membrane, and we measure the transport of fluorescent integral proteins from the surface of the cell body onto the tether. In this paper we present an analysis to describe the surface diffusion of membrane particles from a spherical shell onto a thin cylindrical process. Provision is made for different rates of diffusion within the two morphologically distinct regions. The relative role of each region in controlling the diffusive flux between regions is determined primarily by a single dimensionless parameter. This parameter incorporates the ratio of the two diffusion coefficients as well as the dimensions of each region. The analysis can be applied to a fluorescence photobleaching experiment in which the extended process is bleached. If the dimensions of the spherical cell body and the cylindrical extension are known, then the diffusion coefficients of both regions can be determined from the experimental fluorescence recovery curve.  相似文献   

4.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

5.
We have used the fluorescence photobleaching recovery technique to study the dependence on oxygen tension of the lateral mobility of fluorescently labeled band 3, the phospholipid analogue fluorescein phosphatidylethanolamine, and glycophorins in normal red blood cell membranes. Band 3 protein and sialic acid moieties on glycophorins were labeled specifically with eosin maleimide and fluorescein thiosemicarbazide, respectively. The band 3 diffusion rate increased from 1.7 x 10(-11) cm2 s-1 to 6.0 x 10(-11) cm2 s-1 as oxygen tension was decreased from 156 to 2 torr, and a further increase to 17 x 10(-11) cm2 s-1 occurred as oxygen tension was decreased from 2 to 0 torr. The fractional mobility of band 3 decreased from 58 to 32% as oxygen tension was decreased from 156 to 0 torr. The phospholipid diffusion coefficient remained constant as oxygen tension was decreased from 156 to 20 torr, but increased from 2.3 x 10(-9) cm2 s-1 to 7.1 x 10(-9) cm2 s-1 as oxygen tension was decreased from 20 to 0 torr. Neither the diffusion coefficient nor the fractional mobility of glycophorins changed significantly at low oxygen tension. Under non-bleaching excitation conditions, intensities of fluorescence emission were identical for oxygenated and deoxygenated eosin-labeled RBCs. Deoxygenated eosin-labeled RBCs required 160-fold greater laser intensities than did oxygenated RBCs to achieve comparable extents of photobleaching, however. Oxygen seems to act as a facilitator of fluorophore photobleaching and may thereby protect the fluorescently labeled red cell membrane from photodamage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We studied the lateral mobility of membrane components in cell- substrate focal contacts using the fluorescence photobleaching recovery method. The measurements were performed on isolated substrate-attached membranes of chicken gizzard fibroblasts. The diffusion coefficients of a fluorescent lipid probe and rhodamine-conjugated surface proteins within contact regions (identified by interference-reflection microscopy) were significantly lower than those measured in nonattached areas along the ventral membrane. Complete recovery of fluorescence after photobleaching of the lipid probe was measured both in focal contacts and in nonattached areas with lateral diffusion coefficient (D) of approximately 10(-8) cm2/s. This indicated that the lipid probe is free to diffuse from and into the contact regions. Rhodamine-labeled surface components (mostly proteins) exhibited almost complete recovery after bleaching (approximately 90%) in unattached regions of the ventral membrane with D congruent to 10(-9 cm2/s. The rhodamine-labeled proteins in focal contacts showed only partial recovery (approximately 50%), suggesting that large proportion of the membrane proteins in cell- substrate contacts are immobile (within the time scale of the experiments, D less than or equal to 5 x 10(-12) cm2/s. The implications of these findings on the molecular dynamics of cell contacts are discussed.  相似文献   

7.
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranes in vivo. The unicellular cyanobacterium Synechococcus sp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. In Synechococcus 7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 x 10(-10) cm(2) s(-1) at 30 degrees C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexes in vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.  相似文献   

8.
We have studied the lateral mobility of class 1 major histocompatibility complex (MHC) proteins in the membranes of human Epstein-Barr virus-transformed B cells using fluorescence photobleaching recovery. Class I MHC antigens were labeled with either W6/32 monoclonal antibody or its Fab fragment directly conjugated to fluorescein isothiocyanate. The diffusion coefficient of class I antigens labeled with Fab fragments of W6/32 was identical to that of a lipid analogue, fluorescein phosphatidylethanolamine, and was 10-fold greater than that of antigens labeled with intact W6/32. Furthermore, antigens labeled with Fab fragments but not with intact W6/32 had fractional mobilities identical to that of the lipid probe. The lateral mobility of class I antigens was dependent on the time of incubation with fluorescent antibody and on the presence of antibody microaggregates. Finally, class I MHC proteins labeled with intact W6/32 but not with Fab fragments were immobilized in the membranes of most cells grown in suspension at high cell density. These results suggest that, in the unperturbed state, class I MHC antigens diffuse as rapidly as membrane lipid, i.e., without cytoskeletal constraint. Cross-linking with bivalent ligand and growth to high cell density may trigger membrane events leading to slowing and immobilization of these proteins.  相似文献   

9.
D E Wolf  P Henkart  W W Webb 《Biochemistry》1980,19(17):3893-3904
Fluorescence-labeled trinitrophenylated stearoylated dextrans have been used as controllable analogues of cell membrane proteins on model membranes and on a variety of natural cell membranes. This paper reports their behavior on 3T3 mouse fibroblast plasma membranes. Spatial distribution on the membrane was studied by fluorescence microscopy, and molecular mobility was measured by fluorescence photobleaching recovery. At concentrations from 10(2) to 3 X 10(3) molecules/micron2 essentially homogeneous fluorescence was observed after treatment with these stearoyldextrans in culture. Diffusion coefficients and fractional recovery of fluorescence after photobleaching were cvoncentration independent. For 3 X 10(3) molecules/micron2 we found at 23 degrees C D = (3.0 +/- 1.8) X 10(-10) cm2/s with 65 +/- 17% recovery and at 37 degrees C D = (7.0 +/- 5.0) X 10(-10) cm2/s without a change of the fractional recovery. Cross-linking with antibodies stopped diffusion on a macroscopic scale and sometimes induced patching, mottling (defined as the development of gaps in the fluorescence layer), and capping (defined as the confinement of the fluorescence to less than 50% of the cell). Capping required approximately 3 h at 37 degrees C and was inhibited by metabolic poisons and cytochalasin B. These drugs did not affect stearoyldextran diffusion or fractional recovery. Colchicine, which did not dramatically affect capping, slowed diffusion two- to threefold but did not affect fractional recovery. The antibody inhibition of the diffusion of stearoyldextrans precedent to capping did not affect the diffusion of a lipid probe or fluorescein isothiocyanate labeled membrane proteins. When the trinitrophenylated stearoyldextran was cleared from most of the surface by capping and the surface subsequently relabeled with stearoyldextran, the diffusion coefficient and fractional recovery of the second label were identical with those of the first label prior to capping. Thus, capping does not clear an immobilizing factor from the membrane.  相似文献   

10.
Destabilization of the target membrane structure by fusion-promoting viral glycoproteins is assumed to be an essential part of the fusion mechanism. To explore this possibility, we employed fluorescence photobleaching recovery to investigate changes in the lateral mobility of native membrane constituents in human red blood cells (RBCs) during the course of Sendai virus-mediated fusion. The mobile fraction of RBC membrane proteins labeled with 5-(4,6-dichloro-5-triazin-2-yl)aminofluorescein increased significantly in the course of fusion, relaxing back to the original values upon completion of the fusion process. A different effect was observed on the lateral mobility of a fluorescent lipid probe, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine, incorporated initially into the external monolayer. In this case, the lateral diffusion coefficient (rather than the mobile fraction) increased during fusion; this increase was permanent in the absence of Mg-ATP and transient in its presence. An active viral fusion protein was required to mediate the effects on both protein and lipid mobility. These effects, which take place on the same time scale as that of the fusion process, suggest that the organization of the RBC membrane is perturbed during fusion and that the observed changes may be related to the fusion mechanism.  相似文献   

11.
Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane‐bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.  相似文献   

12.
The overall objective of our work was to make a hydrogel-supported phospholipid bilayer that models a cytoskeleton-supported cell membrane and provides a platform for studying membrane biology. Previously, we demonstrated that a pre-Lipobead, consisting of phospholipids covalently attached to the surface of a hydrogel, could give rise to a Lipobead when incubated with liposomes because the attached phospholipids promote self-assembly of a phospholipid membrane on the pre-Lipobead. We now report the properties of that Lipobead membrane. The lateral diffusion coefficient of fluorescently labeled phosphatidylcholine analogs in the membrane was measured by fluorescence recovery after photobleaching and was found to decrease as the surface anchor density and hydrogel crosslinking density increased. Results from the quenching of phosphatidylcholine analogs suggest that the phospholipid membrane of the Lipobead was composed mostly of a semipermeable lipid bilayer. However, the diffusional barrier properties of the Lipobead membrane were demonstrated by the entrapment of 1.5-3.0 K dextran molecules in the hydrogel core after liposome fusion. This hydrogel-supported bilayer membrane preparation shows promise as a new platform for studying membrane biology and for high throughput drug screening.  相似文献   

13.
The association between the lipid bilayer and the membrane skeleton is important to cell function. In red blood cells, defects in this association can lead to various forms of hemolytic anemia. Although proteins involved in this association have been well characterized biochemically, the physical strength of this association is only beginning to be studied. Formation of a small cylindrical strand of membrane material (tether) from the membrane involves separation of the lipid bilayer from the membrane skeleton. By measuring the force required to form a tether, and knowing the contribution to the force due to the deformation of a lipid bilayer, it is possible to calculate the additional contribution to the work of tether formation due to the separation of membrane skeleton from the lipid bilayer. In the present study, we measured the tethering force during tether formation using a microcantilever (a thin, flexible glass fiber) as a force transducer. Numerical calculations of the red cell contour were performed to examine how the shape of the contour affects the calculation of tether radius, and subsequently separation work per unit area W(sk) and bending stiffness k(c). At high aspiration pressure and small external force, the red cell contour can be accurately modeled as a sphere, but at low aspiration pressure and large external force, the contour deviates from a sphere and may affect the calculation. Based on an energy balance and numerical calculations of the cell contour, values of the membrane bending stiffness k(c) = 2.0 x 10(-19) Nm and the separation work per unit area W(sk) = 0.06 mJ/m2 were obtained.  相似文献   

14.
The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAP), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.  相似文献   

15.
Human red blood cells (RBCs) adhere to and are lysed by schistosomula of Schistosoma mansoni. We have investigated the mechanism of RBC lysis by comparing the dynamic properties of transmembrane protein and lipid probes in adherent ghost membranes with those in control RBCs and in RBCs treated with various membrane perturbants. Fluorescence photobleaching recovery was used to measure the lateral mobility of two integral membrane proteins, glycophorin and band 3, and two lipid analogues, fluorescein phosphatidylethanolamine (Fl-PE) and carbocyanine dyes, in RBCs and ghosts adherent to schistosomula. Adherent ghosts manifested 95-100% immobilization of both membrane proteins and 45-55% immobilization of both lipid probes. In separate experiments, diamide-induced cross-linking of RBC cytoskeletal proteins slowed transmembrane protein diffusion by 30-40%, without affecting either transmembrane protein fractional mobility or lipid probe lateral mobility. Wheat germ agglutinin- and polylysine-induced cross-linking of glycophorin at the extracellular surface caused 80-95% immobilization of the transmembrane proteins, without affecting the fractional mobility of the lipid probe. Egg lysophosphatidylcholine (lysoPC) induced both lysis of RBCs and a concentration-dependent decrease in the lateral mobility of glycophorin, band 3, and Fl-PE in ghost membranes. At a concentration of 8.4 micrograms/ml, lysoPC caused a pattern of protein and lipid immobilization in RBC ghosts identical to that in ghosts adherent to schistosomula. Schistosomula incubated with labeled palmitate released lysoPC into the culture medium at a rate of 1.5 fmol/h per 10(3) organisms. These data suggest that lysoPC is transferred from schistosomula to adherent RBCs, causing their lysis.  相似文献   

16.
We present a new method for creating patches of fluid lipid bilayers with conjugated biotin and other compounds down to 1 microm resolution using a photolithographically patterned polymer lift-off technique. The patterns are realized as the polymer is mechanically peeled away in one contiguous piece in solution. The functionality of these surfaces is verified with binding of antibodies and avidin on these uniform micron-scale platforms. The biomaterial patches, measuring 1 micro m-76 microm on edge, provide a synthetic biological substrate for biochemical analysis that is approximately 100x smaller in width than commercial printing technologies. 100 nm unilamellar lipid vesicles spread to form a supported fluid lipid bilayer on oxidized silicon surface as confirmed by fluorescence photobleaching recovery. Fluorescence photobleaching recovery measurements of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC(18)(3))) stained bilayer patches yielded an average diffusion coefficient of 7.54 +/- 1.25 microm(2) s(-1), equal to or slightly faster than typically found in DiI stained cells. This diffusion rate is approximately 3x faster than previous values for bilayers on glass. This method provides a new means to form functionalized fluid lipid bilayers as micron-scale platforms to immobilize biomaterials, capture antibodies and biotinylated reagents from solution, and form antigenic stimuli for cell stimulation.  相似文献   

17.
Integral membrane proteins of the nuclear envelope (NE) are synthesized on the rough endoplasmic reticulum (ER) and following free diffusion in the continuous ER/NE membrane system are targeted to their proper destinations due to interactions of specific domains with other components of the NE. By studying the intracellular distribution and dynamics of a deletion mutant of an integral membrane protein of the nuclear pores, POM121, which lacks the pore-targeting domain, we investigated if ER retention plays a role in sorting of integral membrane proteins to the nuclear envelope. A nascent membrane protein lacking sorting determinants is believed to diffuse laterally in the continuous ER/NE lipid bilayer and expected to follow vesicular traffic to the plasma membrane. The GFP-tagged deletion mutant, POM121(1-129)-GFP, specifically distributed within the ER membrane, but was completely absent from the Golgi compartment and the plasma membrane. Experiments using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) demonstrated that despite having very high mobility within the whole ER network (D = 0.41 +/- 0.11 micro m(2)/s) POM121(1-129)-GFP was unable to exit the ER. It was also not detected in post-ER compartments of cells incubated at 15 degrees C. Taken together, these experiments show that amino acids 1-129 of POM121 are able to retain GFP in the ER membrane and suggest that this retention occurs by a direct mechanism rather than by a retrieval mechanism. Our data suggest that ER retention might be important for sorting of POM121 to the nuclear pores.  相似文献   

18.
Fluorescently labeled microtubule-associated proteins or poly-L-lysine (13,000 MW) were prepared by reaction with fluorescein isothiocyanate. The labeled compounds were used as probes of the assembly of calf brain tubulin using fluorescence photobleaching recovery techniques which allow measurement of the diffusion coefficient and percentage mobility of the fluorescent probe. When unfractionated tubulin (defined as material containing tubulin and microtubule-associated proteins) was polymerized at room temperature or 37 degrees C, either probe could be incorporated into microtubules, since the observed diffusion coefficient (approximately 1.7 X 10(-8) cm2/s) was much slower than that for either probe free in solution. The microtubules formed in the presence of labeled microtubule-associated proteins were free to diffuse while those formed in the presence of labeled polylysine were partially immobilized. Thus the fluorescence photobleaching recovery technique can be used to measure crosslinking of microtubules as well as assembly or interactions with other structures. When unfractionated tubulin was incubated with labeled polylysine in the presence of Ca2+ at room temperature, the observed diffusion coefficient (approximately 5.1 X 10(-8) cm2/s) probably represents the formation of rings of tubulin. The effect of mild and vigorous shearing, of cholchicine, and of different Mg2+ concentrations on the properties of the system were examined.  相似文献   

19.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

20.
Planar model membranes, like supported lipid bilayers and surface-tethered vesicles, have been proven to be useful tools for the investigation of complex biological functions in a significantly less complex membrane environment. In this study, we introduce a supported double membrane system that should be useful for studies that target biological processes in the proximity of two lipid bilayers such as the periplasm of bacteria and mitochondria or the small cleft between pre- and postsynaptic neuronal membranes. Large unilamellar vesicles (LUV) were tethered to a preformed supported bilayer by a biotin–streptavidin tether. We show from single particle tracking (SPT) experiments that these vesicle are mobile above the plane of the supported membrane. At higher concentrations, the tethered vesicles fuse to form a second continuous bilayer on top of the supported bilayer. The distance between the two bilayers was determined by fluorescence interference contrast (FLIC) microscopy to be between 16 and 24 nm. The lateral diffusion of labeled lipids in the second bilayer was very similar to that in supported membranes. SPT experiments with reconstituted syntaxin-1A show that the mobility of transmembrane proteins was not improved when compared with solid supported membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号