首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sharma YP  Sumbali G 《Mycopathologia》1999,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1 and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 micrograms/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore, monitoring of aflatoxins in dry fruit slices of quinces is recommended for this region.  相似文献   

2.
A method has been developed for the production of aflatoxin by growing Aspergillus flavus NRRL 3145 on solid substrate wheat. Optimal yields of 900 mug of aflatoxin G(1) and 900 mug of aflatoxin B(1) per g of substrate were obtained in 4 to 5 days at 28 C. A study of aflatoxin production on hulls and groats of oats and on whole oats by A. flavus strains NRRL 2999, NRRL 3000, and NRRL 3145 revealed that aflatoxin was produced on all three substrates, although production was very slight on hulls. Strain NRRL 3145 grown on solid substrate groats produced the largest amounts of aflatoxin: 580 mug of B(1) and 450 mug of G(1) per g of substrate. A densitometric method for reading thin-layer chromatographic plates is described; this is more objective and more accurate than the visual methods previously used for the determination of all four aflatoxins.  相似文献   

3.
Biosynthetic relationship among aflatoxins B1, B2, M1, and M2.   总被引:7,自引:6,他引:1       下载免费PDF全文
Aflatoxins are a family of toxic, acetate-derived decaketides that arise biosynthetically through polyhydroxyanthraquinone intermediates. Most studies have assumed that aflatoxin B1 is the biosynthetic precursor of the other aflatoxins. We used a strain of Aspergillus flavus which accumulates aflatoxin B2 to investigate the later stages of aflatoxin biosynthesis. This strain produced aflatoxins B2 and M2 but no detectable aflatoxin B1 when grown over 12 days in a low-salt, defined growth medium containing asparagine. Addition of dichlorvos to this growth medium inhibited aflatoxin production with concomitant accumulation of versiconal hemiacetal acetate. When mycelial pellets were grown for 24, 48, and 72 h in growth medium and then transferred to a replacement medium, only aflatoxin B2 and M2 were recovered after 96 h of incubation. Addition of sterigmatocystin to the replacement medium led to the recovery of higher levels of aflatoxins B2 and M2 than were detected in control cultures, as well as to the formation of aflatoxins B1 and M1 and O-methylsterigmatocystin. These results support the hypothesis that aflatoxins B1 and B2 can arise independently via a branched pathway.  相似文献   

4.
Aflatoxins are a family of toxic, acetate-derived decaketides that arise biosynthetically through polyhydroxyanthraquinone intermediates. Most studies have assumed that aflatoxin B1 is the biosynthetic precursor of the other aflatoxins. We used a strain of Aspergillus flavus which accumulates aflatoxin B2 to investigate the later stages of aflatoxin biosynthesis. This strain produced aflatoxins B2 and M2 but no detectable aflatoxin B1 when grown over 12 days in a low-salt, defined growth medium containing asparagine. Addition of dichlorvos to this growth medium inhibited aflatoxin production with concomitant accumulation of versiconal hemiacetal acetate. When mycelial pellets were grown for 24, 48, and 72 h in growth medium and then transferred to a replacement medium, only aflatoxin B2 and M2 were recovered after 96 h of incubation. Addition of sterigmatocystin to the replacement medium led to the recovery of higher levels of aflatoxins B2 and M2 than were detected in control cultures, as well as to the formation of aflatoxins B1 and M1 and O-methylsterigmatocystin. These results support the hypothesis that aflatoxins B1 and B2 can arise independently via a branched pathway.  相似文献   

5.
Aspergillus niger, a mold commonly associated with Aspergillus flavus in damaged corn, interferes with the production of aflatoxin when grown with A. flavus on autoclaved corn. The pH of corn-meal disks was adjusted using NaOH-HCl, citric acid-sodium citrate, or a water extract of A. niger fermented corn. Aflatoxin formation was completely inhibited below pH 2.8-3.0, irrespective of the system used for pH adjustment. When grown in association with A. flavus NRRL 6432 on autoclaved corn kernels, A. niger NRRL 6411 lowered substrate pH sufficiently to suppress aflatoxin production. The biodegradation of aflatoxin B1 or its conversion to aflatoxin B2a were eliminated as potential mechanisms by which A. niger reduces aflatoxin contamination. A water extract of corn kernels fermented with A. niger caused an additional inhibition of aflatoxin formation apart from the effects of pH.  相似文献   

6.
Stored and cooked samples of pearl millet (Pennesetum typhoides), which is regularly consumed as food by the Paharia tribe in the hilly regions of Santhal Pargana, Bihar State, India, that were harvested in January 1989 were analyzed for mold flora, natural occurrence of Aspergillus flavus and A. parasiticus, and incidence and levels of aflatoxin B1. Of the 22 fungal species isolated, A. flavus and A. parasiticus were the predominant species (63.8%) during the rainy season, followed by other species of Aspergillus, Penicillium, Fusarium, Rhizopus, Helminthosporium, and Curvularia. Screening of 169 A. flavus and A. parasiticus strains showed that 59 of them were toxigenic, producing various combinations of aflatoxins B1, B2, G1, and G2. The amounts of aflatoxin B1 ranged between 4 and 30 mg/100 ml of liquid medium. Analysis of stored and cooked samples also revealed a high incidence and alarming levels of naturally produced aflatoxin B1. Forty-nine of 75 stored and 16 of 38 cooked samples contained various combinations of aflatoxins. The levels of aflatoxin B1 ranged between 17 and 2,110 ppb in stored samples and 18 and 549 ppb in cooked samples. The correlation of insect damage with A. flavus and A. parasiticus incidence and quantity of aflatoxin B1 was found to be insignificant.  相似文献   

7.
This research examines the distribution of aflatoxins among conidia and sclerotia of toxigenic strains of Aspergillus flavus Link and Aspergillus parasiticus Speare cultured on Czapek agar (21 days, 28 degrees C). Total aflatoxin levels in conidia and sclerotia varied considerably both within (intrafungal) and among strains. Aspergillus flavus NRRL 6554 accumulated the highest levels of aflatoxin (conidia: B1, 84000 ppb; G1, 566000 ppb; sclerotia: B1, 135000 ppb; G1, 968000 ppb). Substantial aflatoxin levels in conidia could place at risk those agricultural workers exposed to dust containing large numbers of A. flavus conidia. Cellular ratios of aflatoxin B1 to aflatoxin G1 were nearly identical in conidia and sclerotia even though levels of total aflatoxins in these propagule types may have differed greatly. Aflatoxin G1 was detected in sclerotia of all A. flavus strains but in the conidia of only one strain. Each of the A. parasiticus strains examined accumulated aflatoxin G1 in both sclerotia and conidia. These results are examined in the context of current evolutionary theory predicting an increase in the chemical defense systems of fungal sclerotia, propagules critical to the survival of these organisms.  相似文献   

8.
Stored and cooked samples of pearl millet (Pennesetum typhoides), which is regularly consumed as food by the Paharia tribe in the hilly regions of Santhal Pargana, Bihar State, India, that were harvested in January 1989 were analyzed for mold flora, natural occurrence of Aspergillus flavus and A. parasiticus, and incidence and levels of aflatoxin B1. Of the 22 fungal species isolated, A. flavus and A. parasiticus were the predominant species (63.8%) during the rainy season, followed by other species of Aspergillus, Penicillium, Fusarium, Rhizopus, Helminthosporium, and Curvularia. Screening of 169 A. flavus and A. parasiticus strains showed that 59 of them were toxigenic, producing various combinations of aflatoxins B1, B2, G1, and G2. The amounts of aflatoxin B1 ranged between 4 and 30 mg/100 ml of liquid medium. Analysis of stored and cooked samples also revealed a high incidence and alarming levels of naturally produced aflatoxin B1. Forty-nine of 75 stored and 16 of 38 cooked samples contained various combinations of aflatoxins. The levels of aflatoxin B1 ranged between 17 and 2,110 ppb in stored samples and 18 and 549 ppb in cooked samples. The correlation of insect damage with A. flavus and A. parasiticus incidence and quantity of aflatoxin B1 was found to be insignificant.  相似文献   

9.
Gabliks, J. (Massachusetts Institute of Technology, Cambridge), W. Schaeffer, L. Friedman, and G. Wogan. Effect of aflatoxin B(1) on cell cultures. J. Bacteriol. 90:720-723. 1965.-Aflatoxin B(1), a metabolite of the mold Aspergillus flavus, is toxic to cell cultures. The toxic effect is evidenced by an inhibition of growth followed by progressive granulation, rounding, and finally sloughing of the cells from the glass. In studies with embryonated eggs, duck embryos were found to be four to five times more susceptible than chick embryos. In studies on Chang liver cultures, there were decreases in cell number, protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA) per culture with increasing aflatoxin B(1) concentrations. Since the cell number decreased and the protein, RNA, and DNA content per cell increased with increasing concentrations of aflatoxin, enlarged cells were suggested. These data are consistent with in vivo data of other workers who have found hypertrophic cells with enlarged nuclei in histological studies on the tissues of rats and ducklings fed toxic peanut meal.  相似文献   

10.
Aflatoxins (AFS) are toxic and carcinogenic fungal metabolites. Aflatoxin B1 is the most toxic and has been classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC). Samples of imported rice were analyzed for their AFS content. Finley ground rice subsamples were extracted with water/methanol (100:150 v/v) followed by purification with Immunoaffinity columns (IAC). AFS purified from extracts were determined with RP-HPLC-FLD using post column electrochemical derivatization with a Kobra Cell. Concentrations of aflatoxin B1 and total AFS in test rice samples were ≤0.123 and ≤2.58 µg/kg, respectively. Tween 80 improved recoveries (86 and 106%) of aflatoxin B1 and aflatoxin G1 from brown rice. Recoveries of Aflatoxin B2 and aflatoxin G2 were substantially reduced (non-detected to 27%) by Tween 80 used in IAC cleanup of brown rice extracts. Visible dense growth of Aspergillus parasiticus (food isolate) occurred at 25 °C but higher aflatoxin B1amounts (23.9–39.3 µg/kg) accumulated when the mold grew at 37 °C in rice seeds stored for three weeks. It could be concluded that levels of aflatoxin B1 and total AFS in rice samples were within the permissible amounts of the EU and other international legislations.  相似文献   

11.
G Ogbadu 《Microbios》1980,27(107):19-26
Spores of Aspergillus flavus (UI, 81) inoculated into some local food materials were irradiated at 62.5, 125.0, 250.0 and 500.0 krad, and the effect on aflatoxin B1 production on subsequent incubation was measured. The results show that aflatoxin B1 production decreased with increasing gamma irradiation dose in soya bean, groundnut, palm juice, while paw paw mash showed a relatively high yield of aflatoxin at 125.0 krad as compared to other irradiation levels tested except for the control. Irradiation of soya bean and groundnut inoculated with spores of Aspergillus flavus at 500.0 krad (pre-irradiation incubation period of 2 h) inhibited aflatoxin B1 production. Analysis of variance showed that media, pre-irradiation incubation periods and irradiation levels affected the total amounts of aflatoxin produced.  相似文献   

12.
AIMS: The inhibitory effect of cowdung fumes, Captan, leaf powder of Withania somnifera, Hyptis suaveolens, Eucalyptus citriodora, peel powder of Citrus sinensis, Citrus medica and Punica granatum, neem cake and pongamia cake and spore suspension of Trichoderma harzianum and Aspergillus niger on aflatoxin B(1) production by toxigenic strain of Aspergillus flavus isolated from soybean seeds was investigated. METHODS AND RESULTS: Soybean seed was treated with different natural products and fungicide captan and was inoculated with toxigenic strain of A. flavus and incubated for different periods. The results showed that all the treatments were effective in controlling aflatoxin B(1) production. Captan, neem cake, spore suspension of T. harzianum, A. niger and combination of both reduced the level of aflatoxin B(1) to a great extent. Leaf powder of W. somnifera, H. suaveolens, peel powder of C. sinensis, C. medica and pongamia cake also controlled the aflatoxin B(1) production. CONCLUSIONS: All the natural product treatments applied were significantly effective in inhibiting aflatoxin B(1) production on soybean seeds by A. flavus. SIGNIFICANCE AND IMPACT OF THE STUDY: These natural plant products may successfully replace chemical fungicides and provide an alternative method to protect soybean and other agricultural commodities from aflatoxin B(1) production by A. flavus.  相似文献   

13.
N Uraih  J R Chipley 《Microbios》1976,17(67):51-59
The effects of sodium chloride, sodium acetate, benzoic acid, sodium benzoate, malonic acid, and sodium malonate on growth and aflatoxin production by Aspergillus flavus were investigated in synthetic media. Sodium chloride at concentrations equivalent to or greater than 12 g/100 ml inhibited growth and aflatoxin production, while at 8 g or less/100 ml, growth and aflatoxin production were stimulated. At 2 g or less/100 ml, sodium acetate also stimulated growth and aflatoxin production, but reduction occurred with 4 g or more/100 ml. Malonic acid at 10, 20, 40, and 50 mM reduced growth and aflatoxin production (over 50%) while sodium malonate at similar concentrations but different pH values had the opposite effect. Benzoic acid (pH 3.9) and sodium benzoate (pH 5.0) at 0.4 g/100 ml completely inhibited growth and aflatoxin production. Examination of the effect of initial pH indicated that the extent of inhibitory action of malonic acid and sodium acetate was a function of initial pH. The inhibitory action of benzoic acid and sodium benzoate appeared to be a function of undissociated benzoic acid molecules. Aflatoxin reduction was usually accompanied by an unidentified orange pigment, while aflatoxin stimulation was accompanied by unidentified blue and green fluorescent spots but with lower Rf values that aflatoxins B1, G1, B2, and G2 standards.  相似文献   

14.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari.  相似文献   

15.
Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minimal inhibitory concentration reduce the activity of the tricarboxylic acid cycle; this may lead to an accumulation of acetyl coenzyme A, which is an essential intermediate in the biosynthesis of aflatoxin B1 and T-2 toxin.  相似文献   

16.
Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minimal inhibitory concentration reduce the activity of the tricarboxylic acid cycle; this may lead to an accumulation of acetyl coenzyme A, which is an essential intermediate in the biosynthesis of aflatoxin B1 and T-2 toxin.  相似文献   

17.
A procedure was developed to encapsulate mycelia of an atoxigenic strain of Aspergillus flavus in alginate pellets for seeding into agricultural fields in order to reduce aflatoxin contamination via competitive exclusion. Kaolin, a clay filler commonly employed in alginate formulations, was detrimental to pellet performance as measured by spore yield. Corn cob grits, a by-product of the corn industry, was found to be an excellent replacement for kaolin. Of nine nutritive adjuvants tested, wheat gluten improved pellet performance the most, although gluten concentrations above 5% were difficult to process. The best formulation tested consisted of 1% sodium alginate, 5% corn cob grits and 5% wheat gluten. On a 'per gram' basis, this alginate formulation yielded more spores than either A. flavus sclerotia or colonized wheat seed. Pesticides were also tested as adjuvants with potential use for protecting pellets under field conditions. Only one (chloramphenicol) of four tested pesticides (the others were dichloran, rose Bengal and cyfluthrin) reduced pellet sporulation. Formulations with or without pesticide adjuvants retained similar spore yield potential during a 2-year storage at 8 C. However, spore production in stored products lagged behind that of fresh products. At 75% relative humidity (RH), pellet storage stability decreased with increasing temperature from 27 to 42 C. Pellet spore yield at 32 C decreased as RH decreased from 100 to 90%. Sporulation occurred at 90% RH but not at 88% RH. Spore yield varied widely in four field tests, and the cumulative spore yield was inversely correlated (r2= -0.798, P 0.01) with rainfall. The results suggest that alginate pellets may be effective formulations for delivery of atoxigenic A. flavus strains to furrow-irrigated cotton in desert environments, where aflatoxin contamination of cottonseed is most severe.  相似文献   

18.
Aspergillus parasiticus RCMB 002001 (2) producing four types of aflatoxins B1, B2, G1, and G2 was used in this study as an aflatoxin-producer. Penicillium griseofulvum, P. urticae, Paecilomyces lilacinus, Trichoderma viride, Candida utilis, Saccharomyces cerevisiae as well as a non-toxigenic strain of Aspergillus flavus were found to be able to exhibit growth on aflatoxin B1-containing medium up to a concentration of 500 ppb. It was also found that several fungal strains exhibited the growth in co-culture with A. parasiticus, natural aflatoxins producer, and were able to decreased the total aflatoxin concentration, resulting in the highest inhibition percentage of 67.2% by T viride, followed by P. lilacinus, P. griseofulvum, S. cerevisiae, C. utilis, P. urticae, Rhizopus nigricans and Mucor rouxii with total aflatoxin inhibition percentage of 53.9, 52.4, 52, 51.7, 44, 38.2 and 35.4%, respectively. The separation of bioremediation products using GC/MS revealed that the toxins were degraded into furan moieties.  相似文献   

19.
West African Aspergillus flavus S isolates differed from North American isolates. Both produced aflatoxin B1. However, 40 and 100% of West African isolates also produced aflatoxin G1 in NH4 medium and urea medium, respectively. No North American S strain isolate produced aflatoxin G1. This geographical and physiological divergence may influence aflatoxin management.  相似文献   

20.
Aflatoxin production by a toxigenic strain of Aspergillus flavus was greatly reduced by benzoic acid and sodium benzoate in synthetic media. The reduction was accompanied by the appearance of a yellow pigment. Spectral analyses partially characterized this pigment as closely related to an acetyl derivative of a versiconal-type compound. A cell-free extract prepared from A. flavus grown in synthetic media was active in converting this yellow compound into aflatoxin B1 in the presence of reduced nicotinamide adenine dinucleotide phosphate at 25 degrees C (pH 7.4). In the presence of benzoic acid and its salt or autoclaved cell-free extract, conversion of yellow compound to aflatoxin B1 was prevented. These results suggest that the yellow compound is an intermediate in the secondary metabolic cycle involved in aflatoxin B1 production. Benzoic acid, sodium benzoate, or autoclaving the cell-free extract appear to have respectively blocked or denatured an enzymatic step late in the biosynthetic pathway of aflatoxin B1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号