首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many insects feed on a low‐nitrogen diet, and the origin of their nitrogen supply is poorly understood. It has been hypothesized that some insects rely on nitrogen‐fixing bacteria (diazotrophs) to supplement their diets. Nitrogen fixation by diazotrophs has been extensively studied and convincingly demonstrated in termites, while evidence for the occurrence and role of nitrogen fixation in the diet of other insects is less conclusive. Here, we summarize the methods to detect nitrogen fixation in insects and review the available evidence for its occurrence (focusing on insects other than termites). We distinguish between three aspects of nitrogen fixation investigations: (i) detecting the presence of potential diazotrophs; (ii) detecting the activity of the nitrogen‐fixing enzyme; and (iii) detecting the assimilation of fixed nitrogen into the insect tissues. We show that although evidence from investigations of the first aspect reveals ample opportunities for interactions with potential diazotrophs in a variety of insects, demonstrations of actual biological nitrogen fixation and the assimilation of fixed nitrogen are restricted to very few insect groups, including wood‐feeding beetles, fruit flies, leafcutter ants, and a wood wasp. We then discuss potential implications for the insect's fitness and for the ecosystem as a whole. We suggest that combining these multiple approaches is crucial for the study of nitrogen fixation in insects, and argue that further demonstrations are desperately needed in order to determine the relative importance of diazotrophs for insect diet and fitness, as well as to evaluate their overall impact on the ecosystem.  相似文献   

2.
The role of nitrogen fixation in the nitrogen cycle of the North Atlantic basin was re-evaluated because recent estimates had indicated a far higher rate than previous reports. Examination of the available data on nitrogen fixation rates and abundance ofTrichodesmium, the major nitrogen fixing organism, leads to the conclusion that rates might be as high as 1.09 × 1012 mol N yr–1. Several geochemical arguments are reviewed that each require a large nitrogen source that is consistent with nitrogen fixation, but the current data, although limited, do not support a sufficiently high rate. However, recent measurements of the fixation rates per colony are higher than the historical average, suggesting that improved methodology may require a re-evaluation through further measurements. The paucity of temporally resolved data on both rates and abundance for the major areal extent of the tropical Atlantic, where aeolian inputs of iron may foster high fixation rates, represents another major gap.  相似文献   

3.
Four strains of Rhizobium japonicum, two of which produce slimy and non-slimy colony types and two others which produce large and small colony types, were isolated and cloned. All were infective and nodulated Lee soybean host plants. Each colony type was characterized as to its salt sensitivity to Na+ and K+ ions, relative level of symbiotic nitrogen fixation, and relative level of free-living nitrogen fixation. Growth studies performed in the presence of salts demonstrated that the non-slimy or small colony types were sensitive to salt with significantly depressed growth rates and cell yields. Growth rates and cell yields of slimy, large, colony types were relatively unaffected by salt. Both symbiotic and free-living (non-associative) nitrogen fixation analyses (by acetylene reduction) revealed that the non-slimy, small colonies were significantly more effective than slimy, large colonies.  相似文献   

4.
Nitrogen fixation has been demonstrated in a bacteria-free culture of a semithermophilic blue-green alga, Anabaena flos aquae A-37, employing the criterion of an increase in cellular nitrogen as a basis for determining nitrogen fixation. This is apparently the first time that nitrogen fixation has been demonstrated in a pure culture of a blue-green alga which grows at 40 C and which produces abundant quantities of an extracellular heteropolysaccharide.  相似文献   

5.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies.  相似文献   

6.
The ability of wild indigenous legumes to form root nodules capable of biological nitrogen (N2) fixation has rarely been demonstrated for species in natural ecosystems in large parts of Europe. In order to understand and manage these ecosystems, it is important to demonstrate nodulation across a diverse range of environments, sites and climates. This study surveyed nodulation at a number of sites in Scotland and Sweden. Presence of nodules was noted and nodule structure and indicators of nitrogen fixation capacity were assessed using light and transmission electron microscopy. Soils from several sites were also sampled for carbon and nitrogen analysis. The collections comprised 24 species in Scotland, and 30 taxa in Sweden; 17 of these in common for both countries. Highest species numbers occurred in meadows, farmland margins, hedgerows, roadsides and wasteland. Coastal sites and sites in the mountainous region above the Arctic Circle hosted several rare species. All sampled species had features of N2-fixing nodules such as pink colour (leghaemoglobin) when dissected and bacteroids. Nodule structure for a number of species is here reported for the first time and presence of the N2-fixing enzyme nitrogenase is demonstrated in three previously not studied Swedish legume species. North European legumes may make significant contributions to the N-budgets of their ecosystems. Such species (and their symbionts) represent unique germplasm that may be adopted to empower advances in agriculture and conservation aimed at mitigation and adaptation to the effects of climate change.  相似文献   

7.
Soto I  Cortese M  Carreira V  Folguera G  Hasson E 《Genetica》2006,127(1-3):199-206
We assessed the indirect response of longevity in lines selected for wing length (WL) and developmental time (DT). Longevity in selection lines was compared to laboratory control lines and the offspring of recently collected females. Wild flies (W lines), flies from lines selected for fast development (F lines), and for fast development and large wing length (L lines) outlived control laboratory lines (C lines) and lines selected for fast development and short wing (S lines). The decline in longevity in S lines is in line with the idea that body size and longevity are correlated and may be the result of the fixation of alleles at loci affecting pleiotropically the two traits under selection and longevity. In addition, inbreeding and artificial selection affected the correlation between wing length and longevity that occurs in natural populations of Drosophila buzzatii, suggesting that correlations between traits are not a perdurable feature in a population.  相似文献   

8.
Hydrogen metabolism and energy costs of nitrogen fixation   总被引:1,自引:0,他引:1  
Abstract The high energy costs of biological nitrogen fixation are partly caused by hydrogen production during the reduction of dinitrogen to ammonia. Some nitrogen-fixing organisms can recycle the evolved hydrogen via a membrane-bound uptake hydrogenase. The energetic aspects of hydrogen metabolism and nitrogen fixation are discussed.
Studies on both isolated nitrogenase proteins and nitrogen-fixing chemostat cultures show that energy limitation will result in a high hydrogen production by nitrogenase. In plant- Rhizobium symbiosis, the supply of oxygen or photosynthetate is the limiting factor for nitrogen fixation. In both cases, nitrogen fixation is energy-limited, and it is concluded that a large amount of hydrogen is produced during nitrogen fixation in these symbioses.
Hydrogen reoxidation yields less energy than the oxidation of endogenous substrates, and therefore expression of hydrogenase under oxygen-limited conditions is energetically unfavourable. Moreover, hydrogen reoxidation can never completely regain the energy invested during hydrogen production. The controversial reports of the effect of hydrogen reoxidation on the efficiency of nitrogen fixation are being discussed.
The determination of the energy costs of nitrogen fixation (expressed as the amount of ATP needed to fix 1 mol of N2) using chemostat cultures is described. Calculations show that the nitrogenase-catalysed hydrogen production has more influence on the efficiency of nitrogen fixation than the absence or presence of a hydrogen uptake system.  相似文献   

9.
In Calliphora erythrocephala the visual fixation behaviour in one-eyed flies and partial blinded flies has been investigated. One-eyed flies show approximately the same stripe and edge fixation response as intact flies. Elimination of the frontal eye parts including the binocular field of vision does not effect the visual stripe fixation. On the other hand, if only the frontal areas of both eyes including the binocular field of vision are left open, no preferential direction can be observed (Fig. 1–3). The results imply the existence of a fixation-sensitive area of the eye located outside the binocular field of vision.  相似文献   

10.
Stratified sulfurous lakes are appropriate environments for studying the links between composition and functionality in microbial communities and are potentially modern analogs of anoxic conditions prevailing in the ancient ocean. We explored these aspects in the Lake Banyoles karstic area (NE Spain) through metagenomics and in silico reconstruction of carbon, nitrogen and sulfur metabolic pathways that were tightly coupled through a few bacterial groups. The potential for nitrogen fixation and denitrification was detected in both autotrophs and heterotrophs, with a major role for nitrogen and carbon fixations in Chlorobiaceae. Campylobacterales accounted for a large percentage of denitrification genes, while Gallionellales were putatively involved in denitrification, iron oxidation and carbon fixation and may have a major role in the biogeochemistry of the iron cycle. Bacteroidales were also abundant and showed potential for dissimilatory nitrate reduction to ammonium. The very low abundance of genes for nitrification, the minor presence of anammox genes, the high potential for nitrogen fixation and mineralization and the potential for chemotrophic CO2 fixation and CO oxidation all provide potential clues on the anoxic zones functioning. We observed higher gene abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea that may have a geochemical and evolutionary link related to the dominance of Fe in these environments. Overall, these results offer a more detailed perspective on the microbial ecology of anoxic environments and may help to develop new geochemical proxies to infer biology and chemistry interactions in ancient ecosystems.  相似文献   

11.
Peanuts (Arachis hypogea L.) are often grown on sandy soils and drought stress can be a major limitation on yield. In particular, loss in nitrogen fixation activity associated with soil drying might be limiting due to the need for high nitrogen amounts in both vegetative tissues and seeds of peanut. This study examined the response of nitrogen fixation of intact plants of seventeen peanut genotypes when subjected to soil drying in pots over approximately a 2-wk period. A large range in the sensitivity of nitrogen fixation to soil drying was observed among the seventeen genotypes. Genotype ICGV86015, in particular, was found to have nitrogen fixation that was especially tolerant of soil drying. Significant positive (P?<?0.0001) correlation was found between the soil water content at which nitrogen fixation began decreasing and the amino acid concentration in the leaves of severely stressed plants.  相似文献   

12.
The North Atlantic Ocean receives the largest allochthonous supplies of nitrogen of any ocean basin because of the close proximity of industrialized nations. In this paper, we describe the major standing stocks, fluxes and transformations of nitrogen (N) and phosphorus (P) in the pelagic regions of the North Atlantic, as one part of a larger effort to understand the entire N and P budgets in the North Atlantic Ocean, its watersheds and overlying atmosphere. The primary focus is on nitrogen, however, we consider both nitrogen and phosphorus because of the close inter-relationship between the N and P cycles in the ocean. The oceanic standing stocks of N and P are orders of magnitude larger than the annual amount transported off continents or deposited from the atmosphere. Atmospheric deposition can have an impact on oceanic nitrogen cycling at locations near the coasts where atmospheric sources are large, or in the centers of the highly stratified gyres where little nitrate is supplied to the surface by vertical mixing of the ocean. All of the reactive nitrogen transported to the coasts in rivers is denitrified or buried in the estuaries or on the continental shelves and an oceanic source of nitrate of 0.7–0.95 × 1012 moles NO 3 –1 y–1 is required to supply the remainder of the shelf denitrification (Nixon et al., this volume). The horizontal fluxes of nitrate caused by the ocean circulation are both large and uncertain. Even the sign of the transport across the equator is uncertain and this precludes a conclusion on whether the North Atlantic Ocean as a whole is a net source or sink of nitrate. We identify a source of nitrate of 3.7–6.4 × 1012 moles NO 3 y–1 within the main thermocline of the Sargasso Sea that we infer is caused by nitrogen fixation. This nitrate source may explain the nitrate divergence observed by Rintoul & Wunsch (1991) in the mid-latitude gyre. The magnitude of nitrogen fixation inferred from this nitrate source would exceed previous estimates of global nitrogen fixation. Nitrogen fixation requires substantial quantities of iron as a micro-nutrient and the calculated iron requirement is comparable to the rates supplied by the deposition of iron associated with Saharan dust. Interannual variability in dust inputs is large and could cause comparable signals in the nitrogen fixation rate. The balance of the fluxes across the basin boundaries suggest that the total stocks of nitrate and phosphate in the North Atlantic may be increasing on time-scales of centuries. Some of the imbalance is related to the inferred nitrogen fixation in the gyre and the atmospheric deposition of nitrogen, both of which may be influenced by human activities. However, the fluxes of dissolved organic nutrients are almost completely unknown and they have the potential to alter our perception of the overall mass balance of the North Atlantic Ocean.  相似文献   

13.
In a recent study examining the relationship between longevity and metabolism in a large number of recombinant inbred Drosophila melanogaster lines, we found no indication of the inverse relationship between longevity and metabolic rate that one would expect under the classical "rate of living" model. A potential limitation in generalizing from that study is that it was conducted on experimental material derived from a single set of parental strains originally developed over 20 years ago. To determine whether the observations made with those lines are characteristic of the species, we studied metabolic rates and longevities in a second, independently derived set of recombinant inbred lines. We found no correlation in these lines between metabolic rate and longevity, indicating that the ability to both maintain a normal metabolic rate and have extended longevity may apply to D. melanogaster in general. To determine how closely our measurements reflect metabolic rates of flies maintained under conditions of life span assays, we used long-term, flow-through metabolic rate measurements and closed system respirometry to examine the effects of variables such as time of day, feeding state, fly density, mobility of the flies, and nitrogen knockout on D. melanogaster metabolic rate. We found that CO2 production estimated in individual flies accurately reflects metabolic rates of flies under the conditions used for longevity assays.  相似文献   

14.
Summary Nitrogen-fixing activity in hardwood forests of the northeastern United States occurred in wood litter, greater than 2 cm in diameter. Activity in large dead wood was independent of species, in the case of deciduous wood litter, but was restricted to partially decayed wood with a high moisture content. Maximum rates of activity were observed in the summer months, minimum rates in the winter. Evidence from six stands of varying ages showed that fixation in large wood litter occurred in only 25% of the samples assayed.Fixation was highest in the youngest, 4 years, and oldest, over 200 years, stands; being about 2 kg/ha/yr. The quantity of nitrogen fixed appears to be related to the biomass of dead wood. Large amounts of wood litter in the youngest stands were from slash left after cutting. As the supply of slash is exhausted by decay, nitrogen fixation decreases, with a low around year 20. Fixation then gradually increases as natural thinning adds wood to the litter compartment.Apparently, the amount of nitrogen fixed in dead wood the first 20 years following clearcutting can only replace a modest fraction of the amount lost as a result of the cutting and product removal. Finally, the results indicate that nitrogen fixation in wood litter does not equal nitrogen fixation in a northern hardwood forest calculated using a mass balance approach, suggesting that additional nitrogen inputs exist.  相似文献   

15.
Cycling of amino compounds in symbiotic lupin   总被引:2,自引:0,他引:2  
The composition of amino acids was determined in the xylem andphloem sap of symbiotic lupins grown under a variety of treatmentsdesigned to alter the rate of nitrogen fixation. Asparaginewas the major amino acid in both xylem and phloem with glutamine,glutamate and aspartate also major components. GABA had a highconcentration in the xylem while valine was a major componentin the phloem. Exposure to combined nitrogen in the form ofeither ammonium or nitrate caused a reduction in specific nitrogenaseactivity and was associated with subsequent changes in bothof the translocated saps. Inhibiting nitrogen fixation by exposingnodules to oxygen produced a lower amide to amine ratio in thexylem sap (1.3:1) compared with control and nitrate ratios (2.6:1)and ammonium ratios (7.1:1). Similar ratios for amide aminewere also observed in the phloem sap. Labelling studies using15N2 to follow nitrogen fixation, ammonium assimilation andamino acid transport have shown rapid accumulation of labelinto glutamine with subsequent enrichment in glutamate, aspartate,alanine, and GABA. Asparagine was found in high concentrationsin nodules and became slowly enriched. Labelled nitrogen fixedand assimilated in nodules was detected 40 min later in stemxylem extracts, largely as the amides glutamine and asparagine.These experiments provide evidence that large amounts of nitrogenouscompounds are cycled through the root nodules of symbiotic plants(contributing approximately 50% of xylem N) and that differencesin the composition of the phloem sap may influence nodule growthand activity. Key words: Nitrogen fixation, nitrogen translocation, isotope labelling, legumes, GC-MS  相似文献   

16.
The organically enriched sediments of Loch Eil reduced acetylene (fixed nitrogen) at a higher rate than sediments in the Firth of Lome and other near shore marine locations. Sulphate-reducing bacteria (SRB) were implicated in nitrogen fixation although fixation rates did not correlate with the SRB numbers found in these sediments. The data suggest that a negative relationship may exist between nitrogen fixation and the sulphide content of sediments.  相似文献   

17.
Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms.We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l–1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.  相似文献   

18.
Nitrogen fixation has been investigated during chemostat fermentations with a culture of Methylococcus capsulatus with natural gas. It is demonstrated that nitrogen fixation occurs under conditions when either nitrate or ammonia as nitrogen source is insufficient for the growth on fixed supply of methane and oxygen. The fixation occurs contrary to expectations within a wide range of dilution rates and with variation of concentration of liquid source of nitrogen. An O2 optimum is determined for the nitrogenase system of the culture in an assay. During fermentation a complete abolishment of nitrogenase reaction is attained at 15% air saturation (dissolved oxygen). Conditions for N2 fixation is unaltered with change of pH from 6.8 to 5.7.  相似文献   

19.
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.  相似文献   

20.
1. In situ measurements of nitrogen fixation rates for Aphanizomenon in fertile Colorado lakes with low inorganic nitrogen concentrations demonstrated high efficiency of nitrogen fixation at low irradiance. 2. For study populations, rates of N2 fixation in darkness and with alternating exposure to light and darkness were a higher percentage of light‐saturated rates for Aphanizomenon than for Anabaena, suggesting storage of reduced metabolites at high irradiance that are used subsequently by Aphanizomenon when cells are forced by mixing into zones of low irradiance. Also, saturation of N2 fixation occurred over a lower range of irradiance for Aphanizomenon than for Anabaena. 3. High efficiency of N2 fixation in Aphanizomenon at low or fluctuating irradiance is complementary to its previously demonstrated high efficiency of photosynthesis at low irradiance. Nitrogen fixation rate was also strongly related to DIN concentration; fixation was highest at low DIN (maximum < 5 μg L?1) but was also most vulnerable to photoinhibition under such conditions. 4. The fixation capabilities of Aphanizomenon under weak or varying irradiance could explain its commonly observed domination over Anabaena when transparency is low and available nitrogen is scarce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号