首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cytochrome P-450 in phenobarbital-induced rat liver microsomes was destroyed by 2-isopropyl-4-pentenamide (AIA) in vitro, 50% of the degraded heme was recovered as heme-derived products irreversibly bound to microsomal proteins. In contrast, less than 50% of the degraded heme was accounted for as N-alkylated porphyrins. Furthermore, 64% of the irreversibly bound products was bound specifically to a 54-kD form of cytochrome P-450. Several other compounds which have been reported to destroy cytochrome P-450 by forming N-alkylated porphyrins also produced heme-derived protein adducts. These findings indicate that the formation of heme-derived protein adducts may represent an important pathway for the irreversible degradation of cytochrome P-450 by many xenobiotics.  相似文献   

2.
The heme in rat liver microsomal cytochrome P-450 was labeled with 14C or 3H and the microsomes were fractionated after in vitro incubations with a variety of agents known to destroy cytochrome P-450 heme. A major fraction of the heme label was irreversibly bound to apoprotein in all cases, including incubations with fluroxene, 1-octene, vinyl bromide, trichloroethylene, vinyl chloride, parathion, cumene hydroperoxide, NaN3, or iron-ADP complex. Label was also extensively bound to apoprotein when purified and reconstituted cytochrome P-450 was incubated with NADPH and vinyl chloride. This process appears to be widespread and involved to a significant extent in the cytochrome P-450 heme destruction observed with many compounds.  相似文献   

3.
In the rat liver, the microsomal content of cytochrome P-450 decreased by 50% after triiodothyronine (T3) administration. The molecular basis for the decreased cytochrome P-450 levels was investigated. The activities of the enzymes involved in heme synthesis or degradation were not altered by thyroid hormone administration. The incorporation of 3H-delta-aminolaevulinate into the liver microsomal heme was markedly reduced in T3-treated rats. The latter appeared not to reflect a lowered binding affinity of the apoprotein moiety of cytochrome P-450 for heme. The sodium dodecyl sulfate gel electrophoresis of the microsomal preparation showed a decrease in apocytochrome P-450. It is suggested that the amount of the apocytochrome may be the primary event affected in the formation of cytochrome P-450, by triiodothyronine treatment of thyroidectomized rats.  相似文献   

4.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

5.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

6.
Anaerobic in vitro incubation of microsomes from phenobarbital(PB)-induced rats with halothane results in an irreversible decrease of measurable cytochrome P-450. There is a parallel decrease in heme content under the same incubation conditions. However, microsomes from 3-methylcholanthrene(3-MC)-induced or untreated animals do not show a reduction in cytochrome P-450 content. Aerobic incubation with halothane results in a decrease of cytochrome P-450 which can be completely reversed by dialysis or the addition of potassium ferricyanide. These latter treatments only partially restore the cytochrome P-450 levels following anaerobic incubations. The decrease in cytochrome caused by halothane is not associated with measureable heme N-alkyl adduct formation; lipid peroxidation does not play a role as indicated by the lack of effect of 1 mM EDTA or a decrease in glucose-6-phosphatase activity. Halothane metabolites are bound irreversibly to microsomal protein as determined by gel electrophoresis only when the oxygen concentration is very low. The mechanism of cytochrome P-450 decrease is consistent with the formation of a reactive metabolite which binds to the protein portion and also destroys heme.  相似文献   

7.
Determination of the heme and protein portions of phenobarbital (PB)-inducible and 3-methylcholanthrene inducible forms of cytochrome P-450, P-450(PB-1), and P-450(MC-1), in the liver microsomes of drug-treated animals indicated the presence of 20-30% of apo-cytochrome P-450 in both cases. Inhibition of protein synthesis by cycloheximide injection to the rats did not significantly inhibit the incorporation of delta-amino[14C]levulinic acid (ALA) into the heme of P-450(PB-1) or P-450(MC-1) in the liver, indicating that the heme incorporation into microsomal cytochrome P-450 is not tightly coupled with the synthesis of the apo-cytochrome. When heme-labeled cytosol prepared from [14C]ALA-injected rats was incubated with non-radioactive microsomes in vitro, a significant amount of labeled heme was incorporated into microsomal P-450(PB-1), whereas the incorporation into P-450(MC-1) was much less. The in vitro transfer of heme from cytosol to microsome-bound cytochrome P-450 was stimulated by the addition of an NADPH-generating system to the incubation mixtures, and inhibited when the microsomes were solubilized with sodium cholate and Emulgen-913. Although the in vitro incubation of heme-labeled microsomes with non-radioactive cytosol resulted in some release of labeled heme from the microsomes, no reversible transfer of heme between cytochrome P-450 molecules bound to separate microsomal vesicles was detected when heme-labeled microsomes were incubated with non-radioactive microsomes in the presence and absence of cytosol.  相似文献   

8.
Various rat liver cytochrome P-450 (P-450) isozymes are targets for mechanism-based inactivation by 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4- dihydropyridine (4-ethyl DDC). Unlike rat liver, which contains multiple P-450 isozymes, rabbit lung contains only three major isozymes referred to as forms 2, 5, and 6. We have examined the ability of 4-ethyl DDC to destroy P-450 heme in hepatic and pulmonary microsomes from untreated and beta-naphthoflavone (beta NF)-treated rabbits. This compound destroyed 31% of the P-450 in either hepatic microsomal preparation, but was ineffective at lowering P-450 and heme levels in pulmonary microsomes when examined at a range of concentrations (0.45-5.0 mM). These data suggest that rabbit pulmonary P-450 forms 2, 5, and 6 are not targets for destruction by 4-ethyl DDC, despite the ability of this compound to inactivate rat liver P-450c, the orthologue of rabbit lung form 6.  相似文献   

9.
Administration of allylisopropylacetamide (AIA) produces a dose-related destruction of the heme moiety of the phenobarbital-induced subspecies of hepatic cytochrome P-450. This results in delayed plasma disappearance of the inactivating agent as determined after injection of [14C]AIA. In phenobarbital-pretreated rats, infusion of heme reversed this AIA-mediated impairment of the plasma disappearance of [14C]AIA. In the absence of phenobarbital pretreatment, cytochrome P-450 destruction by AIA was minimal and heme infusion failed to enhance plasma disappearance of [14C]AIA. Since exogenously administered heme is incorporated into hepatic cytochrome P-450 in vivo, these observations suggest that the infused heme restored the functional capacity of the phenobarbital-induced mixed function oxidase system by substituting for the prosthetic heme moiety destroyed by AIA. Heme infusion is a potentially useful therapeutic modality for enhancing drug biotransformation after intoxication with compounds that inactivate cytochrome P-450.  相似文献   

10.
A novel action of the gonadotropic hormones of the adenohypophysis on the regulation of kidney heme metabolism and cytochrome P-450 concentrations is described. The treatment of rats with cis-platinum for 7 days caused a greater than twofold increase in the microsomal cytochrome P-450 and heme concentrations in the kidney. The sodium dodecyl sulfate-gel electrophoresis of the microsomal preparation revealed increased levels of both apocytochrome P-450 and heme in the molecular weight region corresponding to cytochrome P-450. In hypophysectomized rats, similar increases in heme and the cytochrome contents in the kidney were observed. Conversely, the treatment of rats with human chorionic gonadotropin (hCG) fully reversed the effect of cis-platinum on heme and cytochrome P-450 concentrations. The cellular basis of increases in concentrations of heme and the hemoprotein was explored by measuring the incorporation of [14C]glycine-labeled hemoglobin heme into the kidney microsomal heme fractions. In comparison with the control rats, the specific 14C activity of heme in microsomal fraction was not increased. Moreover, the effect of cis-platinum on kidney cytochrome P-450 appeared to be unrelated to alterations in the activities of the rate-limiting enzymes of heme biosynthesis and degradation pathways, delta-aminolevulinate synthetase, and heme oxygenase, respectively. On the other hand, ferrochelatase activity and the concentration of total porphyrins in the kidney were profoundly altered by cis-platinum treatment; a twofold increase in ferrochelatase activity and a marked reduction (40%) in the total porphyrin concentration were observed. Also, the activities of uroporphyrinogen-I synthetase and delta-aminolevulinate dehydratase were decreased in cis-platinum-treated animals. The latter effects reflect a direct inhibitory action of cis-platinum. It appears that the cis-platinum-mediated increase in the microsomal heme concentrations involves an accelerated rate of heme production as a consequence of increased ferrochelatase activity. This, in turn, could increase the production of cytochrome P-450. It is suggested that the anterior pituitary hormones control the concentration of the cytochrome P-450 in the kidney, and this process may be interrupted by cis-platinum.  相似文献   

11.
The treatment of male rats with Hg2+ resulted in significant alterations in heme and hemoprotein metabolism in the adrenal gland which, in turn, were reflected in abnormal steroidogenic activities and steroid output. Twenty-four hours after the administration of 30 mumol of HgCl2/kg (sc) the mitochondrial heme and cytochrome P-450 concentrations increased by approximately 50%. Also, Hg2+ treatment stimulated a porphyrinogenic response which included an 11-fold increase in the activity of delta-aminolevulinate synthetase. The increase in mitochondrial cytochrome P-450 content was reflected in elevated steroid 11 beta-hydroxylase and cholesterol side-chain cleavage activities. In contrast, Hg2+ treatment resulted in decreased concentrations of microsomal cytochrome P-450 (-75%) and heme (-45%). Similarly, the reduction in the microsomal cytochrome P-450 content was accompanied by reduced steroid 21 alpha-hydroxylase and benzo[alpha]pyrene hydroxylase activities. The mechanisms responsible for the loss of the microsomal cytochrome P-450 content appeared to involve a selective impairment of formation of the holocytochrome as well as an enhanced rate of heme degradation. This suggestion is made on the basis of findings that (a) the decrease in the microsomal cytochrome P-450 content was accompanied by a sevenfold increase in the activity of adrenal heme oxygenase, (b) no decrease in apocytochrome P-450 could be detected in sodium dodecyl sulfate-gel electrophoresis of the solubilized microsomal fractions stained for heme, and (c) the concentration of adrenal microsomal cytochrome b5 was significantly increased in the Hg2+-treated animals. It is suggested that Hg2+ directly caused a defect in adrenal steroid biosynthesis by inhibiting the activity of 21 alpha-hydroxylase. The apparent physiological consequences of this effect included lowered plasma levels of corticosterone and elevated concentrations of progesterone and dehydroepiandrosterone. This abnormal plasma steroid profile is indicative of a 21 alpha-hydroxylase impairment.  相似文献   

12.
The metabolic activation of [14C]phenol resulting in covalent binding to proteins has been studied in rat liver microsomes. The covalent binding was dependent on microsomal enzymes and NADPH and showed saturation kinetics for phenol with a Km-value of 0.04 mM. The metabolites hydroquinone and catechol were formed at rates which were 10 or 0.7 times that of the binding rate of metabolically activated phenol. The effects of cytochrome P-450 inhibitors and cytochrome P-450 inducers on the metabolism and binding of phenol to microsomal proteins, suggest that cytochrome P-450 isoenzyme(s) other than P-450 PB-B or P-450 beta NF-B catalyses the metabolic activation of phenol. Furthermore, reconstituted mixed-function oxidase systems containing cytochrome P-450 PB-B and P-450 beta NF-B were (on basis of cytochrome P-450 content) 6 and 11 times less active in catalysing the formation of hydroquinone than microsomes. The isolated metabolites hydroquinone and catechol bound more extensively to microsomal proteins than phenol and the binding of these was not stimulated by NADPH. The binding occurring during the metabolism of phenol could be predicted by the rates of formation of hydroquinone and catechol and the rates by which the isolated metabolites were bound to proteins.  相似文献   

13.
Repeated administration of human chorionic gonadotropin to rats results in a maximal depression of testicular microsomal heme and cytochrome P-450 levels at 24 h, followed by increases that plateau at pretreatment levels by day six. Associated with the depressed levels of microsomal heme and cytochrome P-450 is an increase of testicular microsomal heme oxygenase activity at 12-24 h. Testicular mitochondrial delta-aminolevulinic acid synthase activity was increased at 24 h, and remained elevated throughout the 9-day treatment period. Pretreatment with 1,4,6-androstatrien-3,17-dione, an aromatase inhibitor, failed to prevent the depression of testicular microsomal heme or cytochrome P-450 or increased heme oxygenase activity caused by repeated administration of human chorionic gonadotropin, and administration of estradiol benzoate failed to alter testicular microsomal heme oxygenase activity suggesting that these parameters were not related to altered testicular estrogen content caused by increased aromatase activity. These results suggest that increased testicular heme oxygenase activity is associated with decreased microsomal heme and cytochrome P-450 content during human chorionic gonadotropin-induced desensitization.  相似文献   

14.
The treatment of rats with cis-platinum for 7 days caused a profound, and seemingly selective, decrease (70-80%) in the microsomal cytochrome P-450 levels in the testis. This decrease was accompanied by marked reductions (70-80%) in steroid 17 alpha-hydroxylase activity and in plasma testosterone concentration. The treatment of rats with human chorionic gonadotropin partially restored the cytochrome P-450 concentration and 17 alpha-hydroxylase activity and permitted the plasma testosterone level to approach control values. The effect of cis-platinum on the testicular cytochrome P-450 appeared unrelated to deficiencies in heme metabolic processes, in so far that neither was the activity of delta-aminolevulinate synthetase decreased, nor was that of heme oxygenase increased. These enzymes are rate-limiting in heme biosynthesis and degradation pathways, respectively. Also, the activities of uroporphyrinogen I synthetase, delta-aminolevulinate dehydratase, and ferrochelatase and the concentration of total porphyrins in the testis remained unchanged. The sodium dodecyl sulfate-gel electrophoresis of the microsomal preparation did not reveal a diminished level of apocytochrome; however, in this preparation, heme could not be detected in molecular weight regions corresponding to cytochrome P-450. The microsomal cytochrome b5 and the mitochondrial heme concentrations were not decreased in cis-platinum-treated rats. It is suggested that the mechanism of depletive action of cis-platinum on microsomal cytochrome P-450 involves an impairment of the effective assembly of heme and apoprotein moieties. It is further suggested that the anterior pituitary hormones control the factor(s) involved in this assembly, a process which is interrupted by cis-platinum.  相似文献   

15.
2-Hydroxyestradiol, 2-hydroxyestrone and 2-hydroxy-17α-ethynylestradiol, oxidation products of naturally occurring estrogens and synthetic estrogens in some oral contraceptives were found to be converted by rat liver microsomes to reactive metabolites that become irreversibly bound to microsomal protein. The irreversible binding required microsomes, oxygen and NADPH. The NADPH could be replaced by a xanthine-xanthine oxidase system which is known to generate superoxide anions. The irreversible binding was substantially inhibited by superoxide dismutase, 30% in those incubations containing NADPH and 98% in those incubations containing the xanthine-xanthine oxidase system. Further studies with 2-hydroxyestradiol showed that microsomal cytochrome P-450 was rate limiting in the NADPH-dependent irreversible binding, because the binding was inhibited 62% by an antibody against NADPH-cytochrome c reductase and 70% in an atmosphere of CO:O2 (9:1) when compared to an atmosphere of N2:O2 (9:1). Phenobarbital, a known inducer of cytochrome P-450, had no effect on the irreversible binding of 2-hydroxyestradiol, whereas another inducer of P-450, pregnenolone-16α-carbonitrile, markedly increased the irreversible binding. In contrast, cobaltous chloride, an inhibitor of the synthesis of cytochrome P-450, decreased both P-450 and the irreversible binding. These results are consistent with a mechanism for irreversible binding of estrogens and 2-hydroxyestrogens to microsomes that requires oxidation of the catechol nucleus by cytochrome P-450-generated superoxide anion.  相似文献   

16.
Both purified cytochrome P-450 (P-450) and free ferriprotoporphyrin IX are destroyed by NADPH-P-450 reductase in the presence of NADPH and O2. The process appears to be mediated by H2O2 generated by reduction of O2. Six major products were identified from the reaction of H2O2 with ferri-protoporphyrin IX-hematinic acid, methylvinylmaleimide, and four dipyrrolic propentdyopents. The structures of the propentdyopents were elucidated by mass spectrometry and 1H NMR methods. Both free ferriprotoporphyrin IX and P-450 yielded these same products in similar relative ratios. P-450 heme in rat liver microsomes was degraded in the presence of O2 and NADPH and either NaN3 (a catalase inhibitor) or Fe-ADP (which promotes lipid peroxidation); the products were primarily hematinic acid, methylvinylmaleimide, and small quantities of one propentdyopent. Only the two maleimides were detected in the destruction of microsomal P-450 heme by cumene hydroperoxide and iodosylbenzene. On the basis of the reaction of H2O2 with several metal-octaethylethylporphyrin complexes and free octaethylporphyrin, the iron chelated in ferriprotoporphyrin IX is required for degradation by H2O2. Biliverdin is not an intermediate in the formation of maleimides and propentdyopents from heme. Experiments using the tetraethylpropentdyopent produced from ferrioctaethylporphyrin suggest that propentdyopents are not further cleaved to form the maleimides. A mechanism for oxidative heme destruction consistent with these observations is proposed.  相似文献   

17.
Incorporation of newly synthesized heme into microsome-bound cytochrome P-450 in rat liver was not affected by cycloheximide administration to the animals, indicating that the heme incorporation into cytochrome P-450 is not tightly coupled with the synthesis of the apo-cytochrome. When the heme of microsomal cytochrome P-450 had been labeled in vivo with delta-[14C]aminolevulinic acid, and then the animals were treated with phenobarbital (PB) or 3-methylcholanthrene (MC), PB-induced or MC-induced form of cytochrome P-450 was found to contain labeled heme derived from preexistent cytochrome P-450. These observations indicated that the heme of microsome-bound cytochrome P-450 is not tightly associated with the protein portion, and exchanges reversibly between different molecular species of cytochrome P-450 in vivo.  相似文献   

18.
Epidermal microsomal cytochrome P-450 was rapidly degraded when microsomes were aerobically exposed to ultraviolet light in the presence of hematoporphyrin derivative (HPD). Destruction of microsomal cytochrome P-450 was accompanied by loss of heme content, and inhibition of catalytic activity of the monooxygenases, including aryl hydrocarbon hydroxylase and 7-ethoxycoumarin-O-deethylase. Destruction of cytochrome P-450 by photosensitized HPD was oxygen dependent. Quenchers of singlet oxygen, including 2,5 dimethylfuran, histidine, and B-carotene, largely pre- vented photodestruction of cytochrome P-450. Inhibitors of hydroxyl radical including benzoate and mannitol, protected microsomal cytochrome P-450 from destruction. Superoxide dismutase and catalase, scavengers of superoxide anion and hydrogen peroxide, respectively, had no protective effect. These results indicate that generation of singlet oxygen and hydroxyl radicals during hematoporphyrin photosensitization is associated with rapid degradation of cytochrome P-450 and heme in epidermal microsomes, and suggest a novel target for this type of tissue damage in the skin.  相似文献   

19.
The relative potential of various structural isomers (III, XIII) and various 2,4-side chain modified analogs of heme (iron-protoporphyrin IX) to incorporate into rat liver hemoproteins, cytochrome P-450(s), and tryptophan pyrrolase was examined. Such assessments for hepatic cytochrome P-450 relied on generation of reconstitutible apocytochrome(s) P-450 by suicidal alkylation of the existing prosthetic heme moiety by allylisopropylacetamide (AIA) in vivo. Subsequent replacement of the prosthetic heme was brought about by incubating the apocytochrome(s) P-450-enriched preparations with a particular heme isomer or analog. Structure-function relationships of the reconstituted isozymes were assessed in microsomal preparations by monitoring cytochrome P-450 content (structure) and its mixed function oxidase activity (function). In parallel, the relative ability of these heme isomers and analogs to functionally constitute hepatic tryptophan pyrrolase was also assessed by monitoring the relative increase in holoenzyme activity when preparations deliberately enriched in constitutible apoenzyme were incubated with each of these compounds. The findings reveal that 2,4-side chain modifications on the heme IX skeleton markedly influence the function of the constituted hemoproteins possibly by affecting their structural assembly through steric, electronic, and/or hydrophobic interactions with the corresponding apoproteins. Furthermore, these studies not only reveal that the structural specifications of the active prosthetic site of rat liver cytochrome P-450(s) differ from those of tryptophan pyrrolase, but also that the structural specifications of these mammalian hemoproteins for their prosthetic heme differ considerably from those reported for their bacterial counterparts.  相似文献   

20.
A cytochrome P-450 from neonatal pig testicular microsomes was purified to homogeneity as judged by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and by double diffusion on agar against antiserum raised in rabbits against the protein. The enzyme shows both 17 alpha-hydroxylase (Vmax = 4.6 nmol of product/min/nmol of P-450, Km = 1.5 microM) and C17,20 lyase (Vmax = 2.6 nmol of product/min/nmol of P-450, Km = 2.4 microM) activities. Both activities require NADPH and a flavoprotein P-450 reductase; microsomal P-450 reductase from pig and rat livers was used in these studies. The enzyme possesses a single subunit of molecular weight 59,000 +/- 1,000 as determined by electrophoresis on polyacrylamide with sodium dodecyl sulfate and by chromatography on sodium dodecyl sulfate-Sephadex. The enzyme is a glycoprotein and contains 8 nmol of heme/mg of protein and 40 nmol of phospholipid/mg of protein. All heme detected by pyridine hemochromogen is accounted for as P-450 by difference spectroscopy of the reduced P-450.carbon monoxide complex. This complex shows an absorbance maximum at 448 nm with no evidence of P-420. These studies raise the possibility that one microsomal protein (cytochrome P-450) may possess two enzymatic activities (hydroxylase and lyase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号