首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria were isolated from mesophyll protoplasts and bundlesheath protoplasts or strands which were obtained by enzymaticdigestion of six C4 species: Zea mays, Sorghum bicolor, Panicummiliaceum, Panicum capillare, Panicum maximum and Chloris gayana,representative of three C4 types. Photorespiratory glycine oxidationand related enzyme activities of mesophyll and bundle sheathmitochondria were compared. Mesophyll mitochondria showed good P/O ratios with malate andsuccinate as substrate but lacked the ability to oxidize glycine.On the other hand, mitochondria isolated from bundle sheathprotoplasts of P. miliaceum and bundle sheath strands of Z.mays possessed glycine oxidation activity similar to that ofmitochondria from C3 plant leaves. The two enzymes involvedin glycine metabolism in mitochondria, serine hydroxymethyltransferaseand glycine decarboxylase, were also assayed in the mitochondriaof the two cell types. The activities of the two enzymes inbundle sheath mitochondria were in the range found in C3 mitochondria.In contrast, the activities in mesophyll mitochondria were eithernot detectable or far lower than those in bundle sheath mitochondriaand ascribed to contaminating bundle sheath mitochondria. The present results indicate the deficiency of a complete glycineoxidation system in mesophyll mitochondria and also a differentiationbetween mesophyll and bundle sheath cells of C4 plants withrespect to the photorespiratory activities of the mitochondria. (Received June 8, 1983; Accepted August 29, 1983)  相似文献   

2.
Enzymes of the C4, C3 pathway and photorespiration have beenanalyzed for P. hians and P. milioides, which have chlorenchymatousbundle sheath cells in the leaves. On whole leaf extracts thelevels of PEP carboxylase are relatively low compared to C4species, RuDP carboxylase is typical of C3 species, and enzymesof photorespiratory metabolism appear somewhat intermediatebetween C3 and C4. Substantial levels of PEP carboxylase, RuDPcarboxylase, and photorespiratory enzymes were found in bothmesophyll and bundle sheath cells. Low levels of C4-acid decarboxylatingenzymes may limit the capacity for C4 photosynthesis in P. hiansand P. milioides. The results on enzyme activity and distributionbetween mesophyll and bundle sheath cells are consistent withCO2 fixation via C3 pathway in these two species. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and bythe University of Wisconsin Research Committee with funds fromthe Wisconsin Alumni Research Foundation; and by the NationalScience Foundation Grant BMS 74-09611. (Received September 16, 1975; )  相似文献   

3.
The kinetic properties of phosphoenolpyruvate (PEP) carboxylasehave been studied among several Flaveria species: the C3 speciesF. cronquistii, the C3–C4 species F. pubescens and F.linearis, and the C4 species F. trinervia. At either pH 7 or8, the maximum activities (in µmol.mg Chl–1.h–1)for F. pubescens and linearis (187–513) were intermediateto those of the C3 species (12–19) and the C4 species(2,182–2,627). The response curves of velocity versusPEP concentration were hyperbolic for the C3 and C3–C4species at either pH 7 or 8 while they were sigmoidal for theC4 species at pH 7 and hyperbolic at pH 8. The Km values forPEP determined from reciprocal plots were lowest in the C3 species,and of intermediate value in the C3–C4 species comparedto the K' values of the C4 species determined from Hill plotsat either pH 7 or 8. Glucose-6-phosphate (G6P) decreased theKm values for PEP at both pH 7 and 8 in the C3 and C3–C4species. In the C4 species, G6P decreased the K' values at pH8 but increased the K' values at pH 7. In all cases, G6P hadits effect by influencing the activity at limiting PEP concentrationswith little or no effect on the maximum activity. At pH 8 andlimiting concentrations of PEP the degree of stimulation ofthe activity by G6P was greatest in the C4 species, intermediatein F. linearis, a C3–C4 species, and lowest in the C3species. In several respects, the PEP carboxylases of the C3–C4Flaveria species have properties intermediate to those of theC3 and C4 species. (Received April 30, 1983; Accepted August 22, 1983)  相似文献   

4.
Light and electron microscopic observations of the leaf tissueof Panicum milioides showed that the bundle sheath cells containeda substantial number of chloroplasts and other organelles. Theradial arrangement of chlorenchymatous bundle sheath cells,designated as Kranz leaf anatomy, has been considered to bespecific to C4 plants. However, photosynthetic 14CO2 fixationand 14CO2 pulse-and-chase experiments revealed that the reductivepentosephosphate pathway was the main route operating in leavesof P. milioides. The interveinal distance of the leaves wasintermediate between C3and C4Gramineae species. These resultsindicate that P. milioides is a natural plant species havingchracteristics intermediate between C3 and C4 types. (Received March 6, 1975; )  相似文献   

5.
In C4 plants phosphoenolpyruvate (PEP) of the C4 cycle may betransported on a chloroplast transporter which also transports3-phosphoglycerate (3-PGA) and triosephosphates. In C3 plantsPEP is not considered to be effectively transported on the chloroplastphosphate translocator. The influences of certain organic phosphates,having a similar structure to either PEP or triose-phosphates,on 3-PGA dependent O2 evolution by C4 (Digitaria sanquinalisL. Scop.) and C3 (Hordeum vulgare L.) mesophyll chloroplastswere investigated. In the C4 mesophyll chloroplasts phosphoglycolatewas a competitive inhibitor (Ki = 2.1 mM) of 3-PGA dependentO2 evolution, and was as effective as previously reported forPEP. 2-Phosphoglycerate was also a competitive inhibitor (Kt= 8.6 mM) of O2 evolution in the C4 mesophyll chloroplasts with3-PGA as substrate, while phospholactate was a weak inhibitorand glyphosate had no effect. Neither PEP, phosphoglycolatenor 2-phosphoglycerate were effective inhibitors of 3- PGA dependentO2 evolution in the C3 chloroplasts. Phosphohydroxypyruvatewas a competitive inhibitor of 3-PGA dependent O22 evolutionin both chloroplast types. The selectivity in inhibition ofO2 evolution with 3-PGA as substrate suggests that the C4 mesophyllchloroplasts can recognize certain organic phosphates with thephosphate in the C-2 or C-3 position but that the C4 mesophyllchloroplasts can only effectively recognize certain organicphosphates with the phosphate in the C-3 position. The resultsalso support the view that 3-PGA and PEP are transported onthe same phosphate translocator in C4 mesophyll chloroplasts. 1 Current address: Department of Horticulture, 2001 Fyffe Court,The Ohio State University, Columbus, Ohio 43210-1096. (Received March 24, 1987; Accepted April 16, 1987)  相似文献   

6.
Bundle sheath cells were enzymatically isolated from representatives of three groups of C4 plants: Zea mays (NADP malic enzyme type), Panicum miliaceum (NAD malic enzyme type), and Panicum maximum (phosphoenolpyruvate (PEP) carboxykinase type). Cellular organelles from bundle sheath homogenates were partially resolved by differential centrifugation and on isopycnic sucrose density gradients in order to study compartmentation of photosynthetic enzymes. A 48-h-dark pretreatment of the leaves allowed the isolation of relatively intact chloroplasts. Enzymes that decarboxylate C4 acids and furnish CO2 to the Calvin cycle are localized as follows: NADP malic enzyme, chloroplastic in Z. mays; NAD malic enzyme, mitochondrial in all three species; PEP carboxykinase, chloroplastic in P. maximum. The activity of NAD malic enzyme in the three species was in the order of P. miliaceum > P. maximum > Z. mays. There were high levels of aspartate and alanine aminotransferases in bundle sheath extracts of P. miliaceum and P. maximum and substantial activity in Z. mays. In all three species, aspartate aminotransferase was mitochondrial whereas alanine aminotransferase was cytoplasmic. Based on the activity and localization of certain enzymes, the concept for aspartate and malate as transport metabolites from mesophyll to bundle sheath cells in C4 species of the three C4 groups is discussed.  相似文献   

7.
Factors concerning the chloroplast disposition in bundle sheathcells were investigated in finger millet (Eleusine coracanaGaertn.), and NAD malic enzyme type C4 plant with the centripetalarrangement of bundle sheath chloroplasts. Segments were cutfrom immature regions of emerging leaves in which the centripetalarrangement of bundle sheath chloroplasts had not yet been established.The leaf segments were floated on solutions with or withoutreagents. Sections were made of the segments at time intervalsand the distribution of bundle sheath chloroplasts was observedby light microscopy. The bundle sheath chloroplasts migratedto the vascular bundle and established a centripetal arrangementby 12-16 h in control solutions. Auxins, cycloheximide and cytochalasinB inhibited the disposition of bundle sheath chloroplasts whilechloramphenicol and colchicine had no effect. The inhibitoryeffect of auxins appeared only at early stages of chloroplastmigration while cycloheximide and cytochalasin B were effectiveeven at later stages. Cessation of elongation growth, cytoplasmicprotein synthesis and microfilaments seemed to be associatedwith the centripetal disposition of bundle sheath chloroplasts.Copyright1993, 1999 Academic Press Bundle sheath chloroplast, C4 plant, chloroplast orientation, Eleusine coracana, finger millet  相似文献   

8.
Intact chloroplasts were isolated from mesophyll and bundlesheath protoplasts of a C4 plant, Panicum miliaceum L., to measurethe uptake of [1-14C]pyruvate into their sorbitol-impermeablespaces at 4?C by the silicone oil filtering centrifugation method.When incubated in the dark, both chloroplasts showed similarslow kinetics of pyruvate uptake, and the equilibrium internalconcentrations were almost equal to the external levels. Whenincubated in the light, only mesophyll chloroplasts showed remarkableenhancement of the uptake, the internal concentration reaching10–30 times of the external level after 5 min incubation.The initial uptake rate of the mesophyll chloroplasts was enhancedabout ten fold by light and was saturated with increasing pyruvateconcentration; Km and Vmax were 0.2–0.4 mM and 20–40µmol(mg Chl)–1 h–1, respectively. The lightenhancement was abolished by DCMU and uncoupling reagents suchas carbonylcyanide-m-chlorophenylhydrazone and nigericin. Theseresults indicate the existence of a light-dependent pyruvatetransport system in the envelope of mesophyll chloroplasts ofP. miliaceum. The uptake activity of mesophyll chloroplastsboth in the light and the dark was inhibited by sulfhydryl reagentssuch as mersalyl and p-chloromercuriphenylsulfonate, but thebundle sheath activity was insensitive to the reagents. Thesefindings are further evidence for the differentiation of mesophylland bundle sheath chloroplasts of a C4 plant with respect tometabolite transport. (Received July 3, 1986; Accepted October 8, 1986)  相似文献   

9.
To study possible changes in the transport metabolites betweenchloroplasts and cytoplasm during CAM induction of Mesembryanthemumcrystallinum, we compared substrate specificity of P11 translocator(s)in isolated chloroplasts from the C3 and CAM-induced plants.The [14C]glu-cose 6-phosphate (G6P) transport activity was significantonly in the chloroplasts of CAM-mode plants and not detectablein those of C3-mode, while a similar high rate of [32P]Pi uptakewas observed with both types of chloroplasts. Kinetic analysisof G6P uptake in the CAM chloroplasts showed a high Vmax [10.6µmol (mg Chl)–1 h–1] and a comparatively lowKm value (0.41 mM); the latter was similar to Ki values of Pi,3-phosphoglycerate and phospho-enolpyruvate, 0.30, 0.34 and0.47 mM, respectively. On the other hand, [32P]Pi uptake inthe CAM chloroplasts was inhibited competitively by G6P witha Ki value (8.4 mM) 20-fold higher than the Km value for G6Puptake, while that in C3 chloroplasts was not inhibited at all.These results suggest that a new G6P/Pi, counterexchange mechanismis induced in the chloroplast envelope of CAM-induced M. crystallinumin addition to the ordinary type of P, translocator, that cannottransport G6P, already present in the C3-type chloroplasts. (Received March 17, 1997; Accepted May 10, 1997)  相似文献   

10.
HATTERSLEY  P. W. 《Annals of botany》1984,53(2):163-180
The cross-sectional area of ‘primary carbon assimilation’(PCA) (or mesophyll) tissue and of ‘photosynthetic carbonreduction’ (PCR) (or parenchymatous bundle sheath, PBS)tissue associated with each vein has been measured in transversesections of leaf blades of 124 grass species (Poaceae). Thespecies sample is representative of all major grass taxa, andof all photosynthetic types found in this family, viz. C3, C3/C4intermediate, C4 NADP-malic enzyme type (NADP-ME), C4 NAD-malicenzyme type (NAD-ME) and PEP carboxykinase type (PCK). MeanPCA (or mesophyll) area per vein varies between photosynthetictypes in the order C3 > NAD-ME > PCK = NADP-ME, mean PCR(or PBS) area per vein in the order NAD-ME > PCK = C3 >NADP-ME, and mean PCA/PCR (or mesophyll/PBS) area ratio in theorder C3 > NADP-ME > NAD-ME > PCK. Since grass leaveshave parallel venation, tissue areas and area ratios are directlyproportional to tissue volumes and volume ratios. Regressionanalyses of plots of PCA (or mesophyll) area per vein againstPCR (or PBS) area per vein yield characteristic slopes for photosynthetictypes. Differences between types in all these parameters arenearly always statistically significant, even within high leveltaxonomic groups (Eupanicoids and Chloridoids). However, differencesbetween major taxa (Eupanicoids, Andropogonoids, Chloridoids),within a photosynthetic type, are frequently not significant.This histometric characterization of photosynthetic types isdiscussed in relation to the co-operation of PCA and PCR tissuesin C4 photosynthesis, to possible differences between C4 typesin PCR spatial requirements and to the developmental originof PCR tissue. Grasses, Poaceae, C4 photosynthesis, C4 leaf blade anatomy, ‘Kranz’, NADP-malic enzyme, NAD-malic enzyme, PEP carboxykinase, PCA tissue, PCR tissue, taxonomy  相似文献   

11.
Distribution of chloroplasts in bundle sheath cells was examinedby light and electron microscopy during the leaf developmentof finger millet (Eleusine coracana Gaertn.), an NAD malic enzymetype C4 plant with centripetal arrangement of bundle sheathchloroplasts. Young chloroplasts are almost evenly distributedalong the cell walls in bundle sheath cells of folded immatureleaves. In elongating leaves and above the elongation zone thebundle sheath chloroplasts tend to lie along the radial wallsand the walls adjacent to the vascular bundle. They furthermigrate near to the vascular bundle and finally establish acentripetal arrangement. Mitochondria, microbodies and nucleusmigrate along with the chloroplasts. Etioplasts and other organellesare centripetally located in the bundle sheath cells of etiolatedseedlings grown in the dark. Bundle sheath chloroplast, C4 plant, chloroplast, chloroplast orientation, Eleusine coracana, finger millet  相似文献   

12.
Chloroplast envelopes were isolated from chloroplasts purifiedfrom Spinacea oleracea L. (C3), Panicum miliaceum L. (NAD-malicenzyme-type C1), Digitaria sanguinalis (L.) Scop. (NADP-malicenzyme-type C4), Kalanchoe daigremontiana Hamet et Perrier (constitutiveCAM), and from Mesembryanthemum crystallinum L. (inducible CAM)performing either C3 photosynthesis or Crassulacean acid metabolism(CAM). For each species, methods were developed to isolate chloroplastenvelopes free of thylakoid contamination. The polypeptidesof ribulose bisphosphate (RuBP) carboxylase which has been consistentlyreported in envelope preparations of spinach were not foundin envelope preparations of C4 mesophyll chloroplasts. Silverstaining of envelope polypeptides resolved electrophoreticallyon sodium dodecylsulfate polyacrylamide gradient slab gels produceda more complex profile than did Coomassie staining which haspreviously been used with C3 envelope preparations, even thoughsilver reacted poorly with polypeptides corresponding to thesubunits of RuBP carboxylase. All of the plants examined possesseda major polypeptide of 27 to 29 kilodaltons (kD) which was previouslysuggested to be the phosphate translocator in spinach. WithC3 M. crystallinum, the 29 kD polypeptide stained most intensely.After induction of CAM, a 32 kD polypeptide also stained intensely,giving a profile similar to that obtained with the constitutiveCAM species. A 32 kD polypeptide was also prominent in C4 envelopepreparations, suggesting that a 32 kD polypeptide may be a translocatorprotein which is required in Crassulacean acid metabolism andC4 photosynthesis, but not in C3 photosynthesis. (Received April 25, 1983; Accepted July 9, 1983)  相似文献   

13.
In C4 plants, bundle sheath (BS) chloroplasts are arranged inthe centripetal position or in the centrifugal position, althoughmesophyll (M) chloroplasts are evenly distributed along cellmembranes. To examine the molecular mechanism for the intracellulardisposition of these chloroplasts, we observed the distributionof actin filaments in BS and M cells of the C4 plants fingermillet (Eleusine coracana) and maize (Zea mays) using immunofluorescence.Fine actin filaments encircled chloroplasts in both cell types,and an actin network was observed adjacent to plasma membranes.The intracellular disposition of both chloroplasts in fingermillet was disrupted by centrifugal force but recovered within2 h in the dark. Actin filaments remained associated with chloroplastsduring recovery. We also examined the effects of inhibitorson the rearrangement of chloroplasts. Inhibitors of actin polymerization,myosin-based activities and cytosolic protein synthesis blockedmigration of chloroplasts. In contrast, a microtubule-depolymerizingdrug had no effect. These results show that C4 plants possessa mechanism for keeping chloroplasts in the home position whichis dependent on the actomyosin system and cytosolic proteinsynthesis but not tubulin or light.  相似文献   

14.
The Dichotomiflora group of Panicum contains NAD-malic enzyme(ME) species with centrifugal chloroplasts in Kranz cells, NAD-ME(F)species as well as NAD-ME species with centripetal chloroplastsin Kranz cells, NAD-ME (P) species. Many attributes of leafanatomy of 22 C4 Panicum species were investigated to identifydifferences among four different C4 subtypes, i.e. NADP-ME,NAD-ME(F), NAD-ME(P) and PEP-CK species grouped by the C4-aciddecarboxylating enzymes and chloroplast location in Kranz cellsin combination. Differences were found in the number of Kranzcells surrounding a large vein, and the number surrounding asmall vein, the interveinal distances, the proportion of leafcross sectional area occupied by epidermis plus sclerenchyma,by mesophyll cells, by Kranz cells, and by vascular bundles.There were also differences in the ratios of the area of thedifferent cell types. The number of the characters significantlydifferent between a respective pair of C4 subtypes was the largestbetween NAD-ME(F) and NAD-ME(P) species. In principal componentanalysis applied to 11 leaf anatomical characters, the differentC4 subtypes clustered into small groups, although the rangeof variations of PEP-CK species and those of NAD-ME(F) speciesoverlapped. The results were discussed in relation to taxonomyand ecological adaptation of Panicum species in the differentC4 subtypes. C4 photosynthesis, NADP-malic enzyme, NAD-malic enzyme, Phosphoenolpyruvate carboxykinase, C4 leaf anatomy, Panicum, Kranz, Dichotomiflora group  相似文献   

15.
Light microscopic observation of leaf blades of Panicum dichotomiflorumshowed that a mestome sheath was present and chloroplasts inbundle sheath cells were in the centrifugal position. However,a sharp pattern of post-illumination CO2 burst was observedin less than 30 sec after the extinction of light. Among threeC4-acid decarboxylating enzymes, only the activity of NAD-malicenzyme was high. These results indicate that P. dichotomiflorumis a NAD-malic enzyme type species having centrifugal chloroplastsin bundle sheath cells and the sharp pattern of post-illuminationCO2 burst is closely correlated with the C4-acid decarboxylationsystem through NAD-malic enzyme 1This research was supported by a grant from the Ministry ofAgriculture, Forestry and Fishery (GEP55-II-1-7). (Received August 18, 1980; )  相似文献   

16.
Light microscopic observation of leaf blades of Panicum dichotomiflorumshowed that a mestome sheath was present and chloroplasts inbundle sheath cells were in the centrifugal position. However,a sharp pattern of post-illumination CO2 burst was observedin less than 30 sec after the extinction of light. Among threeC4-acid decarboxylating enzymes, only the activity of NAD-malicenzyme was high. These results indicate that P. dichotomiflorumis a NAD-malic enzyme type species having centrifugal chloroplastsin bundle sheath cells and the sharp pattern of post-illuminationCO2 burst is closely correlated with the C4-acid decarboxylationsystem through NAD-malic enzyme 1This research was supported by a grant from the Ministry ofAgriculture, Forestry and Fishery (GEP55-II-1-7). (Received August 18, 1980; )  相似文献   

17.
Both malate and aspartate were decarboxylated at the 4-carbonposition by isolated bundle sheath strands of C4 plants butto different extents depending upon the species. In Digitariasanguinalis, an NADP-malic enzyme (NADP-ME) species, 100 µMoxalic acid blocked malate decarboxylation through NADP-ME withoutaffecting aspartate decarboxylation which apparently occursthrough NAD-ME. In several phosphoenolpyruvate carboxykinase(PEP-CK) type C4 species, 200 µM 3-mercaptopicolinic acid(3-MPA), an inhibitor of PEP-CK, specifically inhibited themalate decarboxylation and partially inhibited aspartate decarboxylation.The aspartate decarboxylation insensitive to 3-MPA may occurthrough NAD-ME. Neither inhibitor prevented C4 acid decarboxylationin bundle sheath cells of NAD-ME species. The inhibitors thusserved to differentiate between the decarboxylation of C4 acidsin PEP-CK and NADP-ME type C4 species through their major decarboxylasefrom that of their less active decarboxylation through NAD-ME. 1 Present address: Department of Biochemistry and Microbiology,Rutgers University, New Brunswick, NJ 08903, U. S. A. (Received January 28, 1977; )  相似文献   

18.
The effects of Na application on growth and nitrate reductaseactivity of seven C4 plant species, Zea mays, Echinochloa crus-galli,Panicum miliaceum, Panicum coloratum, Panicum dichotomiflorum,Panicum maximum and Chloris gayana were studied. Except forZ. mays and P. miliaceum, Na application enhanced growth significantly,and concurrent increases in nitrate reductase activities weredetected in Panicum coloratum, Panicum dichotomiflorum, Panicummaximum and Chloris gayana. 1Present address: International Research Institute, Ciba GeigyJapan Ltd., Takarazuka, Hyogo 665, Japan. 2Present address: Photobiology Lab., Research Institute forFood Science, Kyoto Univ., Uji, Kyoto 611, Japan. (Received May 2, 1988; Accepted August 22, 1988)  相似文献   

19.
RuBP carboxylase-oxygenase protein in three C3 species (Nicotianatabacum L., Solanum tuberosum L., Triticum aestivum L.) andthree C4 species (Panicum miliaceum L., Panicum texanum Buckl.,Zea mays L.) was quantitatively determined by sucrose densitygradient centrifugation and by immunochemical assay using antibodyraised to crystallized tobacco leaf RuBP carboxylase-oxygenase.The C3 species had 3- to 6-fold higher concentrations of RuBPcarboxylase-oxygenase than the C4 species when expressed oneither a chlorophyll or a leaf area basis. The C3 species alsoallocated a higher fraction of their total soluble protein tothis enzyme (from 25 to 60% for the C3 species compared to 8to 23% for the C4 species). There was no RuBP carboxylase-oxygenaseprotein or activity in the C4 mesophyll cells, while the enzymeconstituted from 20 to 40% of the total soluble protein in theC4 bundle sheath cells. A close correlation (r = +0·91)was found between catalytic activity and level of the enzymeprotein in the species examined.  相似文献   

20.
The relationship between leaf anatomy, ultrastructure and carbondiscrimination was investigated in leaves of two F1hybrids (F1-1and F1-2) between two different types of the grassPanicum [anNAD-malic enzyme (ME) C4species], which differ in bundle sheathultrastructure. The female parent was Kabulabula grass, whichhas centrifugal chloroplasts in bundle sheath cells and is designatedan NAD-ME(F) species, while the male parent was Makarikari grass,which has centripetal chloroplasts in the bundle sheath cellsand is designated an NAD-ME(P) species. Suberin lamellae arepresent in Kabulabula grass but are lacking in Makarikari grass.Both F1hybrids had the same chromosome number (2n =36) as theparents but exhibited both univalent (about 45%) and bivalent(about 55%) chromosome pairing which was the major basis forthe identification of F1hybrids. In F1-1, elongated bundle sheathcell chloroplasts are arranged mainly in a centripetal position,similar to those in the male parent, Makarikari grass. In contrast,most of the bundle sheath cells in F1-2 are packed with starch-containingchloroplasts, although in some cells chloroplasts tended tobe centripetally arranged. In both F1hybrids, suberin lamellaewere found in the bundle sheath cell walls, similar to the femaleparent, Kabulabula grass. The 13C values of both F1hybrids were-11.4 to -11.7, almost the same as those of Kabulabula grass(-11.4), but significantly higher than those of Makarikari grass(-12.7). These results indicate that the chloroplast orientationin the bundle sheath cells and the presence of suberin lamellaeare not obligatorily linked in their expression and suggestthat suberin lamellae may play an important role in discriminationagainst13C. Panicum ; NAD-malic enzyme species; hybrid; chloroplast position; 13C discrimination; suberin lamellae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号