首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research has implicated mitochondrial physiology and, by extension, respiratory capacity in the initiation and progress of apoptosis of cells in culture and tissue environments. This hypothesis was tested by separating a hybridoma cell population into subpopulations of varying mitochondrial membrane potential (MMP) using Rhodamine 123 stain and fluorescence-activated cell sorter analysis and subjecting them to two apoptosis inducers, rotenone and staurosporin. Apoptotic death was characterized morphologically through the determination of apoptosis-related chromatin condensation and biochemically through the measurement of caspase-3 enzymatic activity. We found dramatic differences in the apoptotic death kinetics for the subpopulations, with the high MMP cells showing higher resistance to apoptotic death. After incubation with 30 microM rotenone, the low MMP cells exhibited one-third of the viability of the high MMP cells and a three-fold increase in the capsase-3 enzymatic activity. No changes were observed in the DNA content or the cell cycle distributions of the two cell subpopulations, which maintained their mean MMP difference after 20 generations. These results suggest that heterogeneity exists in mammalian cell populations with respect to mitochondrial physiology, which correlates with resistance to apoptotic death.  相似文献   

2.
Apoptotic death of hair cells (HCs) in the cochlea has been found following exposure to intense noise. The current study was designed to examine the mitochondrial energetic function of HCs during the course of noise-induced apoptosis. Two aspects of the mitochondrial energetic function, succinate dehydrogenase (SDH) activity and mitochondrial membrane potential (MMP), were examined in HCs of chinchilla cochleae following exposure to a series of 75 pairs of impulse noises at 155 dB pSPL. The results showed that nuclear condensation and uptake of propidium iodide or trypan blue appeared at 10 min after the noise exposure, indicating a rapid progression of HC apoptosis. However, SDH activity was preserved at this time point. As the time elapsed (1 hr or 24 hrs) after the noise exposure, all newly-generated apoptotic HCs showed strong SDH activity, indicating the preservation of SDH activity during the course of apoptosis. Examination of MMP with rhodamine 123 staining revealed that MMP was sustained in the apoptotic HCs having mild nuclear condensation, even after the occurrence of cell membrane leakage. MMP was reduced with further progression of nuclear condensation. These results suggest the presence of a delayed mitochondrial dysfunction in apoptotic HCs following exposure to intense noise. Research was supported by the Grant NIDCD 1R03 DC006181-01A1.  相似文献   

3.
Our hypothesis is that the development of lesional areas of skin in patients with systemic sclerosis (SSc) originates from the selection of profibrotic cell subpopulations within their non-lesional skin areas, due to their greater resistance to apoptosis. Sensitivity to apoptosis of early-stage or late-stage SSc fibroblasts as well as of healthy cells was compared using extrinsic or intrinsic apoptotic pathway-inducers. Subpopulations of non-lesional SSc cells and healthy cells obtained after repeated Fas-induced apoptosis were compared with respect to their fibrotic parameters such as collagen and MMP secretion. Only late-stage lesional SSc cells were more resistant to Fas-induced apoptosis than their non-lesional counterparts isolated from the same patient. This result correlated with an increase in the levels of the anti-apoptotic proteins cFLIPs and cIAP in lesional cells compared to non-lesional cells. Healthy and non-lesional cell populations could be selected to generate a subpopulation that was more resistant to apoptosis. However, only the late-stage non-lesional SSc fibroblast populations showed a significant decrease in MMP secretion, one of parameters of the fibrosis. Our results show that resistance to apoptosis is an important characteristic of the late-stage lesional SSc fibroblast phenotype. We thus hypothesized that a selection of specific fibroblast subpopulations from late-stage non-lesional SSc skin areas could be at the origin of lesional populations. These cells should become independent of any exogenous stimuli and can induce or maintain SSc skin lesions.  相似文献   

4.
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.  相似文献   

5.
Bcl-xL belongs to a family of proteins which inhibit apoptosis in a number of stimuli including ionizing radiation. To better understand the effects and mechanisms of Bcl-xL on the apoptosis of lymphocytes and provide experimental basis to treat immune injury induced by radiation, we used normal human lymphoblastoid AHH-1 cells that were engineered to overexpress Bcl-xL proteins. Our results showed that overexpressed Bcl-xL reduced time-dependent increase of apoptosis induced by ionizing radiation. Reactive oxygen species (ROS) generation and Bax protein expression in the transfected AHH1-Bcl-xL cells were also lower compared to parental AHH-1 cells. Unexpectedly, the fluorescence intensity of Rhodomine 123 (Rh 123) for measuring mitochondrial membrane potential (MMP) did not change at all detected time points. These results possess a vital significance for insights into a new strategy for gene therapy of radiation-induced immune injury.  相似文献   

6.
Our recent studies have demonstrated that generation of ROS is associated with choline deficiency (CD)-induced apoptosis in CWSV-1 cells, an immortalized rat hepatocyte that becomes tumorigenic by stepwise culturing in decreasing levels of choline. In the present study, we investigated the effect of CD on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by FASCAN assay. Our data demonstrate that MMP in CD-cultured cells was decreased in a time- and dose-dependent manner and that significant disruption occurred at 24 h, relative to high choline (HC, 70 microM) cultured cells. In order to investigate further the relationship among the CD-induced ROS, MMP collapse, and apoptosis, we examined the effects of different inhibitors on ROS production, MMP disruption, and apoptosis in CD or HC-cultured CWSV-1 cells. These data indicate that the disruption of MMP is an upstream event in CD-induced apoptosis, and mitochondrial dysfunction plays a key role in mediating CD-induced apoptosis in CWSV-1 cells.  相似文献   

7.
Decreases in mitochondrial membrane potential (MMP) have been associated with mitochondrial dysfunction that could lead to cell death. The MMP is generated by an electrochemical gradient via the mitochondrial electron transport chain coupled to a series of redox reactions. Measuring the MMP in living cells is commonly used to assess the effect of chemicals on mitochondrial function; decreases in MMP can be detected using lipophilic cationic fluorescent dyes. To identify an optimal dye for use in a high-throughput screening (HTS) format, we compared the ability of mitochondrial membrane potential sensor (Mito-MPS), 5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolylcarbocyanine iodide, rhodamine 123, and tetramethylrhodamine to quantify a decrease in MMP in chemically exposed HepG2 cells cultured in 1,536-well plates. Under the conditions used, the optimal dye for this purpose is Mito-MPS. Next, we developed and optimized a homogenous cell-based Mito-MPS assay for use in 1,536-well plate format and demonstrated the utility of this assay by screening 1,280 compounds in the library of pharmacologically active compounds in HepG2 cells using a quantitative high-throughput screening platform. From the screening, we identified 14 compounds that disrupted the MMP, with half-maximal potencies ranging from 0.15 to 18 μM; among these, compound clusters that contained tyrphostin and 3'-substituted indolone analogs exhibited a structure-activity relationship. Our results demonstrate that this homogenous cell-based Mito-MPS assay can be used to evaluate the ability of large numbers of chemicals to decrease mitochondrial function.  相似文献   

8.
Tumour cells contain mitochondria with elevated membrane potentials compared with normal cells, and thus this feature provides a selective target for destroying tumour cells. To improve mitochondrial-based therapies, a better understanding of the factors involved in regulating mitochondria are required. Since v-fos overexpression has been shown to elevate mitochondrial membrane potentials in rat fibroblasts, we investigated whether the human homologue, c-fos, was also capable of regulating the mitochondrial membrane potential in cells. Rat fibroblasts transfected with the c-fos gene did not accumulate more rhodamine 123 (Rh123) nor did they retain this Rh123 for extended periods of time compared with their parental line. Moreover, there was no difference in survival following dequalinium chloride (Deca) treatment between transfectants and controls. Similarly, reduction of c-fos expression in rat fibroblasts did not significantly alter their mitochondrial membrane potential. In addition, human ovarian carcinoma cells, which overexpress the c-fos gene, did not accumulate more Rh123 nor were they hypersensitive to Deca compared with their parental line. In another human ovarian carcinoma cell line, selection of variants with lower mitochondrial membrane potential did not alter c-fos mRNA or protein levels. These data suggest that alterations in c-fos expression do not regulate the magnitude of the mitochondrial membrane potential.  相似文献   

9.
During apoptosis, the mitochondrial membrane potential (MMP) decreases, but it is not known how this relates to the apoptotic process. It was recently suggested that cytochrome c is compartmentalized in closed cristal regions and therefore, matrix remodeling is required to attain complete cytochrome c release from the mitochondria. In this work we show that, at the onset of apoptosis, changes in MMP control matrix remodeling prior to cytochrome c release. Early after growth factor withdrawal the MMP declines and the matrix condenses. Both phenomena are reversed by adding oxidizable substrates. In mitochondria isolated from healthy cells, matrix condensation can be induced by either denying oxidizable substrates or by protonophores that dissipate the membrane potential. Matrix remodeling to the condensed state results in cristal unfolding and exposes cytochrome c to the intermembrane space facilitating its release from the mitochondria during apoptosis. In contrast, when a transmembrane potential is generated due to either electron transport or a pH gradient formed by acidifying the medium, mitochondria maintain an orthodox configuration in which most cytochrome c is sequestered in the cristae and is resistant to release by agents that disrupt the mitochondrial outer membrane.  相似文献   

10.
Past studies have shown that TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis in a high proportion of cultured melanoma by caspase-dependent mechanisms. In the present studies we have examined whether TRAIL-induced apoptosis of melanoma was mediated by direct activation of effector caspases or whether apoptosis was dependent on changes in mitochondrial membrane potential (MMP) and mitochondrial-dependent pathways of apoptosis. Changes in MMP were measured by fluorescent emission from rhodamine 123 in mitochondria. TRAIL, but not TNF-alpha or Fas ligand, was shown to induce marked changes in MMP in melanoma, which showed a high correlation with TRAIL-induced apoptosis. This was associated with activation of proapoptotic protein Bid and release of cytochrome c into the cytosol. Overexpression of B cell lymphoma gene 2 (Bcl-2) inhibited TRAIL-induced release of cytochrome c, changes in MMP, and apoptosis. The pan caspase inhibitor z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and the inhibitor of caspase-8 (z-Ile-Glu-Thr-Asp-fluoromethylketone; zIETD-fmk) blocked changes in MMP and apoptosis, suggesting that the changes in MMP were dependent on activation of caspase-8. Activation of caspase-9 also appeared necessary for TRAIL-induced apoptosis of melanoma. In addition, TRAIL, but not TNF-alpha or Fas ligand, was shown to induce clustering of mitochondria around the nucleus. This process was not essential for apoptosis but appeared to increase the rate of apoptosis. Taken together, these results suggest that TRAIL induces apoptosis of melanoma cells by recruitment of mitochondrial pathways to apoptosis that are dependent on activation of caspase-8. Therefore, factors that regulate the mitochondrial pathway may be important determinants of TRAIL-induced apoptosis of melanoma.  相似文献   

11.
Cells in the inner region of multicellular spheroids markedly reduce their oxygen consumption rate, presumably in response to their stressful microenvironment. To determine the mechanism behind this metabolic adaptation, we have investigated relative mitochondrial mass and mitochondrial function in cells isolated from different regions of tumor spheroids by using a combination of mitochondrial-specific fluorescent stains and flow cytometric analysis. Uptake of rhodamine 123 (R123) is driven by the mitochondrial membrane potential and thus reflects mitochondrial activity. Uptake of 10-nonyl-acridine orange (NAO) reflects total mitochondrial mass independently of activity because this compound binds to cardiolipin in the inner mitochondrial membrane. NAO fluorescence per unit cell volume only decreased 10–20% for cells from the inner spheroid region compared with those near the surface. There was greater than a twofold reduction in R123 fluorescence in the inner region cells, however. Thus, tumor cells in spheroids alter their rate of respiration predominately by downregulating mitochondrial function as opposed to degradation of mitochondria. There was a correlation between R123 staining per unit cell volume and the growth fraction of the cells from spheroids, but not for monolayer cultures. We also show a linear correlation between R123 staining and the rate of oxygen consumption for both monolayer- and spheroid-derived cells. After separating the inner region cells from the spheroid and replating them in monolayer culture, the R123 uptake recovered to normal levels prior to entry of the cells into S-phase. This reduction in mitochondrial function in quiescent cells from spheroids can explain the long period required for these cells to re-enter the cell cycle and may have important implications for the regulation of tumor cell oxygenation in vivo. J. Cell. Physiol. 176:138–149, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    12.
    Nanosecond, high‐voltage electric pulses (nsEP) induce permeabilization of the plasma membrane and the membranes of cell organelles, leading to various responses in cells including cytochrome c release from mitochondria and caspase activation associated with apoptosis. We report here evidence for nsEP‐induced permeabilization of mitochondrial membranes in living cells. Using three different methods with fluorescence indicators—rhodamine 123 (R123), tetramethyl rhodamine ethyl ester (TMRE), and cobalt‐quenched calcein—we have shown that multiple nsEP (five pulses or more, 4 ns duration, 10 MV/m, 1 kHz repetition rate) cause an increase of the inner mitochondrial membrane permeability and an associated loss of mitochondrial membrane potential. These effects could be a consequence of nsEP permeabilization of the inner mitochondrial membrane or the activation of mitochondrial membrane permeability transition pores. Plasma membrane permeabilization (YO‐PRO‐1 influx) was detected in addition to mitochondrial membrane permeabilization. Bioelectromagnetics 33:257–264, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

    13.
    Proper cellular function requires the maintenance of mitochondrial membrane potential (MMP) sustained by the electron transport chain. Mitochondrial dysfunction is believed to play a role in the development of diabetes and diabetic complications possibly because of the active generation of free radicals. Since MMP can be investigated in clinical settings using fluorescent probes and living whole blood cells, mitochondrial membrane alterations have been observed in some chronic disorders. We have used the mitochondrial indicator 5,5′,6,6′-tetra chloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) in conjunction with flow cytometry to measure the MMP in peripheral blood granulocytes from type 1 diabetes (T1D) families. The intracellular ROS levels and the respiratory burst activity were also measured. Leukocyte MMP was elevated in 20 T1D patients and their 20 non-diabetic siblings compared with 25 healthy subjects without family history of T1D. Fasting plasma glucose was the only correlate of MMP. If confirmed by further observations, the functional implications of mitochondrial hyperpolarisation (probably different among different cells) will require extensive investigation.  相似文献   

    14.
    BACKGROUND: Chloromethyl-X-rosamine (CMXRos) and MitoTracker Green (MTG) have proved to be useful dyes with which to measure mitochondrial function. CMXRos is a lipophilic cationic fluorescent dye that is concentrated inside mitochondria by their negative mitochondrial membrane potential (MMP). MTG fluorescence has been used as a measure of mitochondrial mass independent of MMP. The fluorescence ratio of the two dyes is a relative measure of the MMP independent of mitochondrial mass. Because MTG was recently reported to be sensitive to MMP, we have reevaluated the effects of loss of MMP on MTG and CMXRos fluorescence, using both flow cytometry and laser scanning confocal microscopy (LSCM). METHODS: Using flow cytometry, the relative fluorescence of CMXRos, R123, and MTG was determined in human lymphoblastoid cell lines (LCLs) with or without carbonyl cyanide p-trifluoromethoxylphenyl-hydrazone (FCCP), used to collapse the MMP. LSCM analysis was also used to evaluate the effect of FCCP on MTG and CMXRos fluorescence of mouse cells and viable lenses in culture. The cytotoxicity of the dyes was determined using flow analysis of endogenous NADH fluorescence. The sensitivity of MTG fluorescence to H(2)O(2) was also evaluated using flow cytometry. RESULTS: CMXRos fluorescence was dependent on MMP, whereas MTG fluorescence was not affected by MMP, using either flow or LSCM. Specific staining of mitochondria was seen with both dyes in all cell types tested, without evidence of cytotoxicity, as determined by NADH levels. H(2)O(2) damage slightly increased MTG staining of cells. CONCLUSIONS: Our results indicate that CMXRos is a nontoxic sensitive indicator of relative changes in MMP, whereas MTG is relatively insensitive to MMP and oxidative stress, using both flow and LSCM analyses, provided optimal staining conditions are used. In addition, these dyes can be useful for the study of mitochondrial morphology and function in whole tissues, using LSCM.  相似文献   

    15.
    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.  相似文献   

    16.
    Recent studies have shown that reduction in mitochondrial membrane potential (ΔΨm) and generation of reactive oxygen species are early events in apoptosis. In this study, we present two different models of apoptotic cell death, Chinese hamster ovary (CHO) cells treated with aphidicolin and dexamethasone-treated 2B4 T-cell hybridoma cells, which display opposing mitochondrial changes. CHO cells arrested at G1/S with aphidicolin have a progressive increase in mitochondria mass and number, assessed by flow cytometry and fluorescent microscopy with mitochondria-specific probes. The increase in mitochondrial mass was not accompanied by a gain in net cellular mitochondrial membrane potential, consistent with an accumulation of relatively depolarized mitochondria. Fluorescent microscopy demonstrated an increased content of low ΔΨmmitochondria in aphidicolin-treated CHO cells, but high ΔΨmmitochondria were also present and remained stable in number. Mitochondrial mass correlated with decreased clonogenicity of aphidicolin-treated CHO cells. Cycloheximide prevented both the proliferation of mitochondria and subsequent cell death. In contrast, dexamethasone treatment of 2B4 T-cell hybridoma cells caused a decrease in ΔΨmwithout mitochondrial proliferation. Cycloheximide and Bcl-2 overexpression inhibited the loss of ΔΨm, as well as apoptosis. In both models, cell death was associated with a decrease in mitochondrial potential relative to mitochondrial mass, suggesting that an accumulation of damaged or dysfunctional mitochondria had occurred.  相似文献   

    17.
    The bystander response has been documented in cell lines and cell cultures derived from aquatic species over the past several years. However, little work has been undertaken to identify a similar bystander response in tissue explant cultures from fish. In this study, indirect effects of ionizing gamma radiation on tissue explant cultures of fish were investigated. Tissue explants in culture were exposed to 0.5 Gy and 5 Gy gamma radiation from a 60Co teletherapy unit. A bystander response in Epithelioma papulosum cyprini (EPC) cells exposed to gamma-irradiated tissue conditioned medium from rainbow trout explants was investigated, and the effects on cell survival were quantified by the clonogenic survival assay. Dichlorofluorescein and rhodamine 123 fluorescent dyes were used to identify alterations in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), respectively. Results indicate a different response for the three tissue types investigated. Clonogenic assay results vary from a decrease in cell survival (gill) to no effect (skin) to a stimulatory effect (spleen). Results from fluorescence assays of ROS and MMP show similarities to clonogenic assay results. This study identifies a useful model for further studies relating to the bystander effect in aquatic organisms in vivo and ex vivo.  相似文献   

    18.
    Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells.  相似文献   

    19.
    Wang ZB  Liu YQ  Zhang Y  Li Y  An XX  Xu H  Guo Y  Jin W  Jiang ZJ  Cui YF 《Cell biology international》2007,31(11):1353-1358
    The aim of the study was to investigate the sensitivity of AHH-1 human lymphoblastoid cells to radiation and its relevance to intracellular events, specifically alteration in cellular energy-producing systems. AHH-1 human lymphoblastoid cells were irradiated with 6 Gy of gamma radiation, and then were collected at the indicated time points. Parallel studies were conducted to assess the effects of radiation on the cell proliferation and apoptotic index. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were monitored. A marked decrease of cell viability was observed as early as 12 h postirradiation and fraction of apoptotic cells was highest at 24 h. Intracellular ROS generation measured with 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) appeared to be highest as early as 30 min postirradiation and resumed to normal level at 6 h. Unexpectedly, the fluorescence intensity of Rhodamine 123 for measuring MMP did not change during the first 3h after radiation and exhibited an aberrant increase at 6 h. The results suggest that AHH-1 cells are sensitive to radiation-induced apoptosis and ROS generation is an early phase in the apoptosis process. Moreover, the results might cast doubts on those studies using Rhodamine 123 which hypothesized that the fall in MMP is one of the early events of apoptosis.  相似文献   

    20.
    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-l-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号