首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small GTPase Ran is essential for nucleocytoplasmic transport of macromolecules. In the yeast Saccharomyces cerevisiae, Rna1p functions as a Ran-GTPase activating protein (RanGAP1). Strains carrying the rna1-1 mutation exhibit defects in nuclear transport and, as a consequence, accumulate precursor tRNAs. We have isolated two recessive suppressors of the rna1-1 mutation. Further characterization of one of the suppressor mutations, srn10-1, reveals that the mutation (i) can not bypass the need for Rna1p function and (ii) suppresses the accumulation of unspliced pre-tRNA caused by rna1-1. The SRN10 gene is not essential for cell viability and encodes an acidic protein (pI?=?5.27) of 24.8?kDa. Srn10p is located in the cytoplasm, as determined by indirect immunofluorescence microscopy. Two-hybrid analysis reveals that there is a physical interaction between Srn10p and Rna1p in vivo. Our results identify a protein that interacts with the yeast RanGAP1.  相似文献   

2.
    
In a search for proteins associated with Rna15p in processing the 3 ends of messenger RNAs, we have looked for suppressors that correct, even partially, the thermosensitive growth defect of therna15-2 mutant. Mutations in a single locus that we namedSSM5, were able to suppress both the thermosensitivity of cell growth and the mRNA 3 processing defect associated with therna15-2 mutation, but only slightly alleviated the thermosensitive growth defect of anrna14-1 mutant. Thessm5-1 mutant is sensitive to hydroxyurea at 37° C, a drug that inhibits DNA synthesis. By screening for complementation of the hydroxyurea-sensitive phenotype we cloned the corresponding wild-type gene and found that it corresponds to the essential geneSTS1 (also namedDBF8). Sts1p has an apparent molecular weight of 30 kDa and was confirmed to be a cytosolic protein by immunofluorescence analysis. Western blot analysis indicates that the thermosensitive mutant strainsrna15-2, rna14-1 andpap1-1 present a very low level of the Rna15p at 37° C. Thessm5-1 mutation restores the level of Rna15p in therna15-2 ssm5-1 double mutant. Use of the two-hybrid system suggests that Sts1p does not interact directly with Rna15p, but may be active as a homodimer. The present data suggest that Sts1p may play a role in the transport of Rna15p from the cytoplasm to the nucleus.  相似文献   

3.
In a search for proteins associated with Rna15p in processing the 3′ ends of messenger RNAs, we have looked for suppressors that correct, even partially, the thermosensitive growth defect of therna15-2 mutant. Mutations in a single locus that we namedSSM5, were able to suppress both the thermosensitivity of cell growth and the mRNA 3′ processing defect associated with therna15-2 mutation, but only slightly alleviated the thermosensitive growth defect of anrna14-1 mutant. Thessm5-1 mutant is sensitive to hydroxyurea at 37° C, a drug that inhibits DNA synthesis. By screening for complementation of the hydroxyurea-sensitive phenotype we cloned the corresponding wild-type gene and found that it corresponds to the essential geneSTS1 (also namedDBF8). Sts1p has an apparent molecular weight of 30 kDa and was confirmed to be a cytosolic protein by immunofluorescence analysis. Western blot analysis indicates that the thermosensitive mutant strainsrna15-2, rna14-1 andpap1-1 present a very low level of the Rna15p at 37° C. Thessm5-1 mutation restores the level of Rna15p in therna15-2 ssm5-1 double mutant. Use of the two-hybrid system suggests that Sts1p does not interact directly with Rna15p, but may be active as a homodimer. The present data suggest that Sts1p may play a role in the transport of Rna15p from the cytoplasm to the nucleus.  相似文献   

4.
5.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export. Received: 9 January 1998 / Accepted: 4 May 1998  相似文献   

6.
 The Saccharomyces cerevisiae temperature-sensitive mutants srm1-1, mtr1-2 and prp20-1 carry alleles of a gene encoding a homolog of mammalian RCC1. In order to identify a protein interacting with RCC1, a series of suppressors of the srm1-1 mutation were isolated as cold-sensitive mutants and one of the mutants, designated ded1-21, was found to be defective in the DED1 gene. The double mutant, srm1-1 ded1-21, could grow at 35° C, but not at 37° C. A revertant of srm1-1 ded1-21 that became able to grow at 37° C acquired another mutation in the SRM1 gene, indicating the tight relationship between SRM1 and DED1. In all the rcc1 - strains examined, the amount of mutated SRM1 proteins was reduced or not detectable at the nonpermissive temperature. While mutated SRM1 protein was stabilized in all of the rcc1 - strains by the ded1-21 mutation, the ded1-21 mutation suppressed both srm1-1 and mtr1-2, but not the prp20-1 mutation, contrary to the previous finding that overproduction of the S. cerevisiae Ran homolog GSP1 suppresses prp20-1, but not srm1-1 or mtr1-2. Received: 20 March 1996/Accepted: 1 July 1996  相似文献   

7.
Chromosome landing at the barley Rar1 locus   总被引:3,自引:0,他引:3  
The barley Rar1 gene is an essential component of the race-specific, Mla-12-specified powdery mildew resistance reaction. As part of a map-based cloning strategy designed to isolate Rar1, five barley yeast artificial chromosomes (YACs) have been identified, ranging in size from 300 to 1100 kb. PCR-based YAC end-specific markers have been established and were employed to construct a local YAC contig. Four out of five YAC clones were found to be non-colinear with the source DNA. High-resolution genetic mapping of the YAC ends demonstrated that the set of five overlapping YAC clones encompasses the barley Rar1 gene. Received: 9 June 1998 / Accepted: 15 July 1998  相似文献   

8.
The MBR1 gene was isolated as a multicopy suppressor of the phenotype on glycerol medium of a Saccharomyces cerevisiae strain mutant for the Hap2/3/4/5 transactivator complex. In this paper, we show that Mbr1p is a limiting factor for growth on glycerol medium under the following sub-optimal culture conditions: in late growth phase, at low temperature, at high external pH or in the presence of 1,10-phenanthroline. Moreover, deletion of MBR1 prot- ects cells against stress, whilst overexpression of this gene has the opposite effect. MBR1 expression is induced in the late growth phase and is negatively controlled by the cAMP-dependent protein kinase A (PKA). Both activation of PKA or overexpression of SOK1 or SCH9– two genes isolated as multicopy suppressors of a PKA null mutant – suppress the mbr1 growth defect. Our results indicate that Mbr1p is not an essential element of any one of these pathways. Deletion of SAC1, a gene implicated in vesicular transport, in association with MBR1 deletion, causes synthetic lethality. A possible role of Mbr1p in intracellular trafficking is discussed. Received: 17 January 1997 / Accepted: 20 March 1997  相似文献   

9.
Specific mgi mutations in the α, β or γ subunits of the mitochondrial F1-ATPase have previously been found to suppress ρ0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, ρ0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of ρ0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of ρ0 lethality is an intrinsic property of the altered F1 particle. Received: 7 April 1998 / Accepted: 10 June 1998  相似文献   

10.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature. Received: 18 November 1998 / Accepted: 17 March 1999  相似文献   

11.
By using an oligonucleotide mixture corresponding to a region highly conserved among alternative sigma factors we identified a new σ factor gene (rpoH) from Rhodobacter capsulatus. This gene encodes a protein of 34 kDa with strong similarity to the RpoH (σ 32) factors from other bacterial species. It was not possible to inactivate the R. capsulatusrpoH gene by introducing a resistance cassette, implying that it is essential for growth. The 5′ ends of the mRNAs were mapped to two sequences with similarity to an rpoH- and an rpoD-dependent promoter, respectively. The amounts of both these mRNAs increased after heat shock, but were unaffected by a decrease in oxygen tension. Western analysis using a σ factor-specific antibody revealed the accumulation of a protein of about 34 kDa after heat shock, and an increase in the amounts of a protein with the same size after reduction of oxygen tension in R. capsulatus cultures. Received: 16 March 1998 / Accepted: 28 July 1998  相似文献   

12.
13.
14.
《The Journal of cell biology》1995,130(5):1017-1026
The Saccharomyces cerevisiae gene, RNA1, encodes a protein with extensive homology to the mammalian Ran/TC4 GTPase activating protein. Using indirect immunofluorescence microscopy, we have demonstrated that rna1-1 mutant cells are defective in nuclear import of several proteins. The same result is obtained when nuclear import is examined in living cells using a nuclear protein fused to the naturally green fluorescent protein. These findings suggest a role for the Rna1p in trafficking of proteins across the nuclear membrane. To investigate this role more directly, an in vitro import assay that monitors the import of a fluorescently labeled substrate into the nuclei of semi- intact yeast cells was used. Import to the nucleus requires the addition of exogenous cytosol. Results indicate that, in contrast to wild-type cytosols, extracts made from rna1-1 mutant cells are unable to support import of the fluorescently labeled substrate into competent nuclei. Immunoblotting demonstrates that these mutant-derived extracts are depleted of Rna1p. However, when purified Rna1p is added back to these extracts the import activity is restored in a dose-dependent manner. These results demonstrate that Rna1p plays a direct role in the import of proteins into the nucleus.  相似文献   

15.
The two yeast proteins Rna14p and Rna15p form part of the cleavage/polyadenylation factor IA (CF IA) complex that is involved in the 3′ processing of pre-mRNA. Association of the two proteins is mediated by a small C-terminal peptide from Rna14p and a region in Rna15p that corresponds to the hinge domain first identified within the human orthologue. Here I report the 1H, 13C and 15N spectral assignments for a bacterially co-expressed heterodimer of Rna14p/Rna15p. Further analysis of secondary chemical shifts reveals that both peptides are predominantly α-helical within the complex.  相似文献   

16.
The RNA1 gene from Saccharomyces cerevisiae is defined by the temperature-sensitive rna1-1 mutation that interferes with the maturation and/or nucleocytoplasmic transport of RNA. We describe the purification of a 44-kDa protein from the evolutionary distant fission yeast Schizosaccharomyces pombe and the cloning and sequence analysis of the corresponding gene. Although this protein shares only 42% sequence identity with the RNA1 gene product, it represents a functional homologue because the expression of the S. pombe gene in S. cerevisiae complements the rna1-1 defect. Disruption in S. pombe of the gene encoding the 44-kDa protein, for which we propose the name S. pombe rna1p, reveals that it is essential for growth. Our analysis of purified S. pombe rna1p represents the first biochemical characterization of an RNA1 gene product and reveals that it is a monomeric protein of globular shape. Cell fractionation and immunofluorescence microscopy indicate that rna1p is a cytoplasmic protein possibly enriched in the nuclear periphery. We identify a sequence motif of 29 residues, which is rich in leucine and repeated eight times both in S. pombe and in S. cerevisiae rna1p. Similar leucine-rich repeats present in a series of other proteins, e.g., the mammalian ribonuclease/angiogenin inhibitor, adenylyl cyclase from S. cerevisiae, the toll protein from Drosophila melanogaster, and the sds22 protein phosphatase regulatory subunit from S. pombe, are thought to be involved in protein-protein interactions. Thus rna1p may act as a scaffold protein possibly interacting in the nuclear periphery with a protein ligand that could be associated with exported RNA.  相似文献   

17.
Ras-related, guanine nucleotide-binding proteins of the Ypt/Rab family play a key role at defined steps in vesicular transport, both in yeast and in mammalian cells. In yeast, Ypt1p has an essential function late in endoplasmic reticulum (ER) to Golgi transport, and the redundant Ypt31/Ypt32 GTPases have been proposed to act in transport through and/or from the Golgi. Here we report that mutant alleles of YPT31 and YPT32, whose gene products have a reduced affinity for GTP, are able to suppress the dominant lethal phenotype of YPT1 N121I . Co-expression of YPT1 N121I and the suppressor YPT31 N126I allow essentially undisturbed secretory transport in the absence of the respective wild-type GTPases. Such mutant cells massively overaccumulate 60–100 nm vesicles and are heat sensitive. It appears likely that the mutant GTPases, which are defective in nucleotide binding, compete for the binding of common interacting protein(s). These and other genetic interactions between YPT1, YPT31/32, ARF1 and SEC4 described here strongly support the view that Ypt31p and Ypt32p have a central, Golgi-associated function in anterograde or retrograde transport. Received: 28 August 1998 / Accepted: 14 October 1998  相似文献   

18.
19.
20.
Aspergillus nidulans reproduces asexually via uninucleate, haploid spores, which are produced on morphologically differentiated aerial structures, called conidiophores. These consist of four distinct cell types, a foot with a terminally swollen stalk, metulae, phialides and conidiospores. The molecular mechanisms underlying the morphological changes that occur during conidiophore development have been studied by mutant analysis. We have isolated the hymA mutant, in which conidiophore development is affected at the metula stage. In the mutant metulae do not differentiate properly but come to resemble hyphae (hym = hypha-like metulae). In this paper we have analyzed the corresponding gene. It encodes a highly expressed 44 kDa protein which resides in the cytoplasm and has homologues in yeast, plants, fly, worm, fish, mice and man. We constructed hym deletion strains of Saccharomyces cerevisiae and of A. nidulans and found that the gene is essential in S. cerevisiae but is dispensable in the filamentous fungus. A cellular function for the Hym protein has not yet been defined in any organism. To demonstrate functional conservation we constructed a chimeric protein comprised of the N-terminal half of the A.␣nidulans and the C-terminal half of the mouse homologue MO25. This hybrid protein could fully substitute for HymA function in A. nidulans. In addition, the mouse protein itself partially rescued the hymA mutation in the fungus. HymA is thus highly conserved in evolution and probably serves similar functions. The fact that hymA is required for conidiophore development in A. nidulans suggests that homologous genes in other organisms might also be involved in morphogenesis. Received: 11 February 1998 / Accepted: 14 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号