首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

Background

Combination of riboflavin/UVA cross-linking (CXL) and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking.

Methods and Findings

The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK) was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ±0.5, ±1.0, ±1.5, ±2.0, and ±2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001) in the overall ablation depth between the CXL-half corneas (158±22 µm) and the control-half corneas (174±26 µm). The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001).

Conclusion

The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas.  相似文献   

2.
Real-time shear-wave elastography (SWE) is a newly developed method which can obtain the stiffness of tissues and organs based on tracking of shear wave propagation through a structure. Several studies have demonstrated its potential in the differentiation between diseased and normal tissue in clinical practices, however the applicability to testicular disease has not been well elucidated. We investigated the feasibility and reproducibility of SWE in the detection of testicular torsion. This prospective study comprised 15 patients with complete testicular torsion. Results obtained from SWE along with conventional gray-scale and color Doppler sonography and post-operative pathology were compared. The results revealed that (i) the size of injured testis was increased and the twisted testis parenchyma was heterogeneous. The blood flow signals in injured testis were barely visible or absent; (ii) The Young’s modulus, including Emean, Emax, Emin and SD values in the border area of torsional testis were higher than those of normal testis (Emean, 78.07±9.01kPa vs 22.0±5.10kPa; Emax,94.07±6.53kPa vs 27.87±5.78kPa; Emin, 60.73±7.84 kPa vs 18.90±4.39kPa; SD, 7.67±0.60 kPa vs 2.30±0.36 kPa, [P<0.05]); The Emax and SD values in the central area of the torsional testis were higher than the corresponding area of the normal testis (Emax, 8.23±0.30 kPa vs 3.97±0.95kPa; SD, 1.5±0.26kPa vs 0.67±0.35kPa,[P<0.05]) and Emin values was lower than those of normal testicles(0.93±0.51kPa vs 1.6±0.36kPa; [P<0.05]); (iii) The Young''s modulus measurement between two physicians showed good agreement. The pathological findings were accordance with SWE measurement. SWE is a non-invasive, convenient and high reproducible method and may serve as an important alternative tool in the diagnosis and monitoring the progression of the acute scrotums, in additional to conventional Doppler sonography.  相似文献   

3.

Purpose

To demonstrate a Scheimpflug-based imaging procedure for investigating the depth- and time-dependent strain response of the human cornea to inflation testing of whole eye globes.

Methods

Six specimens, three of which with intact corneal epithelium, were mounted in a customized apparatus within a humidity and temperature-monitored wet chamber. Each specimen was subjected to two mechanical tests in order to measure corneal strain resulting from application of cyclic (cyclic regimen) and constant (creep regimen) stress by changing the intra-ocular pressure (IOP) within physiological ranges (18–42 mmHg). Corneal shape changes were analyzed as a function of IOP and both corneal stress-strain curves and creep curves were generated.

Results

The procedure was highly accurate and repeatable. Upon cyclic stress application, a biomechanical corneal elasticity gradient was found in the front-back direction. The average Young''s modulus of the anterior cornea ranged between 2.28±0.87 MPa and 3.30±0.90 MPa in specimens with and without intact epithelium (P = 0.05) respectively. The Young''s modulus of the posterior cornea was on average 0.21±0.09 MPa and 0.17±0.06 MPa (P>0.05) respectively. The time-dependent strain response of the cornea to creep testing was quantified by fitting data to a modified Zener model for extracting both the relaxation time and compliance function.

Conclusion

Cyclic and creep mechanical tests are valuable for investigating the strain response of the intact human cornea within physiological IOP ranges, providing meaningful results that can be translated to clinic. The presence of epithelium influences the results of anterior corneal shape changes when monitoring deformation via Scheimpflug imaging in inflation experiments of whole eye globes.  相似文献   

4.

Purpose

To determine the vertical and horizontal thickness profiles of the corneal epithelium in vivo using ultra-long scan depth and ultra-high resolution spectral domain optical coherence tomography (SD-OCT).

Methods

A SD-OCT was developed with an axial resolution of ∼3.3 µm in tissue and an extended scan depth. Forty-two eyes of 21 subjects were imaged twice. The entire horizontal and vertical corneal epithelial thickness profiles were evaluated. The coefficient of repeatability (CoR) and intraclass correlation (ICC) of the tests and interobserver variability were analyzed.

Results

The full width of the horizontal epithelium was detected, whereas part of the superior epithelium was not shown for the covered super eyelid. The mean central epithelial corneal thickness was 52.0±3.2 µm for the first measurement and 52.3±3.4 µm for the second measurement (P>.05). In the central zone (0–3.0 mm), the paracentral zones (3.0–6.0 mm) and the peripheral zones (6.0–10.0 mm), the mean epithelial thickness ranged from 51 to 53 µm, 52 to 57 µm, and 58 to 72 µm, respectively. There was no difference between the two tests at both meridians and in the right and left eyes (P>.05). The ICCs of the two tests ranged from 0.70 to 0.97 and the CoRs ranged from 2.5 µm to 7.8 µm from the center to the periphery, corresponding to 5.6% to 10.6% (CoR%). The ICCs of the two observers ranged from 0.72 to 0.93 and the CoRs ranged from 4.5 µm to 10.4 µm from the center to the periphery, corresponding to 8.7% to 15.2% (CoR%).

Conclusions

This study demonstrated good repeatability of ultra-high resolution and long scan depth SD-OCT to evaluate the entire thickness profiles of the corneal epithelium. The epithelial thickness increases from the center toward the limbus.  相似文献   

5.

Purpose

To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level.

Methods

Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate.

Results

The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05).

Conclusions

The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions.  相似文献   

6.
Phacoemulsification is a common surgical method for treating advanced cataracts. Determining the optimal phacoemulsification energy depends on the hardness of the lens involved. Previous studies have shown that it is possible to evaluate lens hardness via ultrasound parametric imaging based on statistical models that require data to follow a specific distribution. To make the method more system-adaptive, nonmodel-based imaging approach may be necessary in the visualization of lens hardness. This study investigated the feasibility of applying an information theory derived parameter – Shannon entropy from ultrasound backscatter to quantify lens hardness. To determine the physical significance of entropy, we performed computer simulations to investigate the relationship between the signal-to-noise ratio (SNR) based on the Rayleigh distribution and Shannon entropy. Young''s modulus was measured in porcine lenses, in which cataracts had been artificially induced by the immersion in formalin solution in vitro. A 35-MHz ultrasound transducer was used to scan the cataract lenses for entropy imaging. The results showed that the entropy is 4.8 when the backscatter data form a Rayleigh distribution corresponding to an SNR of 1.91. The Young''s modulus of the lens increased from approximately 8 to 100 kPa when we increased the immersion time from 40 to 160 min (correlation coefficient r = 0.99). Furthermore, the results indicated that entropy imaging seemed to facilitate visualizing different degrees of lens hardening. The mean entropy value increased from 2.7 to 4.0 as the Young''s modulus increased from 8 to 100 kPa (r = 0.85), suggesting that entropy imaging may have greater potential than that of conventional statistical parametric imaging in determining the optimal energy to apply during phacoemulsification.  相似文献   

7.
The mechanical properties of the mammalian organ of Corti determine its sensitivity to sound frequency and intensity, and the structure of supporting cells changes progressively with frequency along the cochlea. From the apex (low frequency) to the base (high frequency) of the guinea pig cochlea inner pillar cells decrease in length incrementally from 75–55 µm whilst the number of axial microtubules increases from 1,300–2,100. The respective values for outer pillar cells are 120–65 µm and 1,500–3,000. This correlates with a progressive decrease in the length of the outer hair cells from >100 µm to 20 µm. Deiters''cell bodies vary from 60–50 µm long with relatively little change in microtubule number. Their phalangeal processes reflect the lengths of outer hair cells but their microtubule numbers do not change systematically. Correlations between cell length, microtubule number and cochlear location are poor below 1 kHz. Cell stiffness was estimated from direct mechanical measurements made previously from isolated inner and outer pillar cells. We estimate that between 200 Hz and 20 kHz axial stiffness, bending stiffness and buckling limits increase, respectively,∼3, 6 and 4 fold for outer pillar cells, ∼2, 3 and 2.5 fold for inner pillar cells and ∼7, 20 and 24 fold for the phalangeal processes of Deiters''cells. There was little change in the Deiters''cell bodies for any parameter. Compensating for effective cell length the pillar cells are likely to be considerably stiffer than Deiters''cells with buckling limits 10–40 times greater. These data show a clear relationship between cell mechanics and frequency. However, measurements from single cells alone are insufficient and they must be combined with more accurate details of how the multicellular architecture influences the mechanical properties of the whole organ.  相似文献   

8.
BackgroundPathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest.MethodsTwenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed.ResultsThe gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested.ConclusionThe different elasticities measured between the tissues may be due to variations in the muscles'' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.  相似文献   

9.

Purpose

To investigate the bilateral symmetry of the global corneal topography in normal corneas with a wide range of curvature, astigmatism and thickness values

Design

Cross-Sectional Study

Methods

Topography images were recorded for the anterior and posterior surfaces of 342 participants using a Pentacam. Elevation data were fitted to a general quadratic model that considered both translational and rotational displacements. Comparisons between fellow corneas of estimates of corneal shape parameters (elevation, radius in two main directions, Rx and Ry, and corresponding shape factors, Qx and Qy) and corneal position parameters (translational displacements: x0, y0 and z0, and rotational displacements: α, β and γ) were statistically analyzed.

Results

The general quadratic model provided average RMS of fit errors with the topography data of 1.7±0.6 µm and 5.7±1.3 µm in anterior and posterior corneal surfaces. The comparisons showed highly significant bilateral correlations with the differences between fellow corneas in Rx, Ry, Qx and Qy of anterior and posterior surfaces remaining insignificantly different from zero. Bilateral differences in elevation measurements at randomly-selected points in both corneal central and peripheral areas indicated strong mirror symmetry between fellow corneas. The mean geometric center (x0, y0, z0) of both right and left corneas was located on the temporal side and inferior-temporal side of the apex in anterior and posterior topography map, respectively. Rotational displacement angle α along X axis had similar distributions in bilateral corneas, while rotation angle β along Y axis showed both eyes tilting towards the nasal side. Further, rotation angle γ along Z axis, which is related to corneal astigmatism, showed clear mirror symmetry.

Conclusions

Analysis of corneal topography demonstrated strong and statistically-significant mirror symmetry between bilateral corneas. This characteristic could help in detection of pathological abnormalities, disease diagnosis, measurement validation and surgery planning.  相似文献   

10.

Purpose

To determine the keratometric indices calculated based on parameters obtained by Fourier-domain optical coherence tomography (FD-OCT).

Methods

The ratio of anterior corneal curvature to posterior corneal curvature (Ratio) and keratometric index (N) were calculated within central 3 mm zone with the RTVue FD-OCT (RTVue, Optovue, Inc.) in 186 untreated eyes, 60 post-LASIK/PRK eyes, and 39 keratoconus eyes. The total corneal powers were calculated using different keratometric indices: Kcal based on the mean calculated keratometric index, K1.3315 calculated by the keratometric index of 1.3315, and K1.3375 calculated by the keratometric index of 1.3375. In addition, the total corneal powers based on Gaussian optics formula (Kactual) were calculated.

Results

The means for Ratio in untreated controls, post-LASIK/PRK group and keratoconus group were 1.176 ± 0.022 (95% confidence interval (CI), 1.172–1.179), 1.314 ± 0.042 (95%CI, 1.303–1.325) and 1.229 ± 0.118 (95%CI, 1.191–1.267), respectively. And the mean calculated keratometric index in untreated controls, post-LASIK/PRK group and keratoconus group were 1.3299 ± 0.00085 (95%CI, 1.3272–1.3308), 1.3242 ± 0.00171 (95%CI, 1.3238–1.3246) and 1.3277 ± 0.0046 (95%CI, 1.3263–1.3292), respectively. All the parameters were normally distributed. The differences between Kcal and Kactual, K1.3315 and Kactual, and K1.3375 and Kactual were 0.00 ± 0.11 D, 0.21 ± 0.11 D and 0.99 ± 0.12 D, respectively, in untreated controls; -0.01 ± 0.20 D, 0.85 ± 0.18 D and 1.56 ± 0.16 D, respectively, in post-LASIK/PRK group; and 0.03 ± 0.67 D, 0.56 ± 0.70 D and 1.40 ± 0.76 D, respectively, in keratoconus group.

Conclusion

The calculated keratometric index is negatively related to the ratio of anterior corneal curvature to posterior corneal curvature in untreated, post-LASIK/PRK, and keratoconus eyes, respectively. Using the calculated keratometric index may improve the prediction accuracies of total corneal powers in untreated controls, but not in post-LASIK/PRK and keratoconus eyes.  相似文献   

11.
This study is designed to evaluate the visual outcomes, accuracy, and predictability of corneal flaps with different thicknesses created by 60-kHz femtosecond laser according to different corneal thicknesses in the patients with low and moderate refractive error. A total of 182 eyes were divided according to the central corneal thickness (470μm–499 μm in Group A, 500μm–549 μm in Group B, and 550μm–599 μm in Group C) and underwent femtosecond laser-assisted LASIK for a target corneal flap thickness (100 μm for Group A, 110 μm for Group B, and 120 μm for Group C). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and refractive status were examined. The flap thickness of each eye was measured by anterior segment optical coherence tomography (AS-OCT) on 30 points at 1-month follow-up to assess the accuracy and predictability. Postoperatively, at least 75% of eyes had a UDVA of 20/16 or better, less than 2% of eyes lost one line, over 30% of eyes gained one or more lines in CDVA, at least 95% of eyes had astigmatism of less than 0.25 D, all eyes achieved a correction within ±1.00 D from the target spherical equivalent refraction. The visual and refractive outcomes did not differ significantly in all groups (P >0.05). The mean flap thickness was 100.36± 4.32 μm (range: 95–113 μm) in Group A, 111.64 ± 3.62 μm (range: 108–125 μm) in Group B, and 122.32 ± 2.88 μm (range: 112–128 μm) in Group C. The difference at each measured point among the three groups was significant (P < 0.05). The accuracy and predictability were satisfactory in all three groups. In conclusion, this customized treatment yielded satisfactory clinical outcomes with accurate and predictable flap thickness for patients with low and moderate refractive error.  相似文献   

12.

Purpose

To identify corneal epithelial- and stromal-thickness distribution patterns in keratoconus using spectral-domain optical coherence tomography (SD-OCT).

Patients and Methods

We analyzed SD-OCT findings in 20 confirmed cases of keratoconus (group 1) and in 20 healthy subjects with corneal astigmatism ≥2 D (group 2). Epithelial and stromal thicknesses were measured at 11 strategic locations along the steepest and flattest meridians, previously located by corneal topography. Vertical mirrored symmetry superimposition was used in the statistical analysis.

Results

The mean maximum keratometry measurements in groups 1 and 2 were 47.9±2.9 D (range, 41.8–52.8) and 45.6±1.1 D (range, 42.3–47.5), respectively, with mean corneal cylinders of 3.3±2.2 D (range, 0.5–9.5) and 3.6±1.2 D (range, 2.0–6.4), respectively. The mean epithelial thickness along the steepest meridian in group 1 was the lowest (37.4±4.4 µm) at 1.2 mm inferotemporally and the highest (59.3±4.4 µm) at 1.4 mm supranasally from the corneal vertex. There was only a small deviation in thickness along the steepest meridian in group 2, as well as along the flattest meridians in both groups. The stromal thickness distribution in the two groups was similar to the epithelial, while the stromal thickness was generally lower in group 1 than in group 2.

Conclusions

SD-OCT provides details about the distribution of corneal epithelial and stromal thicknesses. The epithelium and stroma in keratoconic eyes were thinner inferotemporally and thicker supranasally compared with control eyes. The distribution pattern was more distinct in epithelium than in stroma. This finding may help improve the early diagnosis of keratoconus.

Trial Registration

ClinicalTrials.gov NCT02023619  相似文献   

13.

Purpose

To investigate the efficacy and mechanism of tacrolimus(FK506), which is a novel macrolide immunosuppressant, in inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) expression in a murine keratitis model induced by Aspergillus fumigatus.

Method

TREM-1 was detected in 11 fungus-infected human corneas by quantitative real-time PCR (qRT-PCR). RAW264.7 macrophages were divided into four groups, which received treatment with zymosan (100 µg/ml), zymosan (100 µg/ml) + mTREM-1/Fc protein (1 µg/ml), or zymosan (100 µg/ml) + FK506 (20 µM) or negative-control treatment. After this treatment, the expression of TREM-1, interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) was assayed using qRT-PCR and ELISA. The mouse model of fungal keratitis was created by intrastromal injection with Aspergillus fumigatus, and the mice were divided into 2 groups: group A received vehicle eye drops 4 times each day, and group B received 4 doses of FK506 eye drops each day. Corneal damage was evaluated by clinical scoring and histologic examination,and myeloperoxidase (MPO) protein levels were also detected by ELISA. The expression of TREM-1, IL-1β and TNFα was then determined at different time points using qRT-PCR and ELISA.

Results

TREM-1 expression dramatically increased in the human corneas with fungal keratitis. In contrast, FK506 reduced the expression of TREM-1, IL-1β and TNFα in RAW264.7 macrophages stimulated with zymosan. In the mouse model, at day 1 post-infection, the corneal score of the FK506-treated group was lower than that of the control, and polymorphonuclear neutrophil (PMN) infiltration was diminished. TREM-1, IL-1β and TNFα expression was significantly reduced at the same time point. However, the statistically significant differences in cytokine expression, clinical scores and infiltration disappeared at 5 days post-infection.

Conclusions

FK506 may inhibit the inflammation induced by fungi and alleviate the severity of corneal damage at an early stage of fungal keratitis by downregulating TREM-1 expression.  相似文献   

14.
Corneal scarring remains a major cause of blindness world-wide, with limited treatment options, all of which have side-effects. Here, we tested the hypothesis that topical application of Rosiglitazone, a Thiazolidinedione and ligand of peroxisome proliferator activated receptor gamma (PPARγ), can effectively block scar formation in a cat model of corneal damage. Adult cats underwent bilateral epithelial debridement followed by excimer laser ablation of the central corneal stroma to a depth of ∼160 µm as a means of experimentally inducing a reproducible wound. Eyes were then left untreated, or received 50 µl of either 10 µM Rosiglitazone in DMSO/Celluvisc, DMSO/Celluvisc vehicle or Celluvisc vehicle twice daily for 2 weeks. Cellular aspects of corneal wound healing were evaluated with in vivo confocal imaging and post-mortem immunohistochemistry for alpha smooth muscle actin (αSMA). Impacts of the wound and treatments on optical quality were assessed using wavefront sensing and optical coherence tomography at 2, 4, 8 and 12 weeks post-operatively. In parallel, cat corneal fibroblasts were cultured to assess the effects of Rosiglitazone on TGFβ-induced αSMA expression. Topical application of Rosiglitazone to cat eyes after injury decreased αSMA expression and haze, as well as the induction of lower-order and residual, higher-order wavefront aberrations compared to vehicle-treated eyes. Rosiglitazone also inhibited TGFβ-induced αSMA expression in cultured corneal fibroblasts. In conclusion, Rosiglitazone effectively controlled corneal fibrosis in vivo and in vitro, while restoring corneal thickness and optics. Its topical application may represent an effective, new avenue for the prevention of corneal scarring with distinct advantages for pathologically thin corneas.  相似文献   

15.

Background

To examine histomorphometrically the parapapillary region in human eyes.

Methodology/Principal Findings

The histomorphometric study included 65 human globes (axial length:21–37 mm). On anterior-posterior histological sections, we measured the distance Bruch''s membrane end (BME)-optic nerve margin (“Gamma zone”), BME-retinal pigment epithelium (RPE) (“Beta zone”), BME-beginning of non-occluded choriocapillaris, and BME-beginning of photoreceptor layer. “Delta zone” was defined as part of gamma zone in which blood vessels of at least 50 µm diameter were not present over a length of >300 µm. Beta zone (mean length:0.35±0.52 mm) was significantly (P = 0.01) larger in the glaucoma group than in the non-glaucomatous group. It was not significantly (P = 0.28) associated with axial length. Beta zone was significantly (P = 0.004) larger than the region with occluded choriocapillaris. Gamma zone (mean length:0.63±1.25 mm) was associated with axial length (P<0.001;r2 = 0.73) with an increase starting at an axial length of 26.5 mm. It was not significantly (P = 0.24) associated with glaucomatous optic neuropathy. Delta zone (present only in eyes with axial length of ≥27 mm) was associated with axial length (P = 0.001) and scleral flange length (P<0.001) but not with glaucoma (P = 0.73).

Conclusions/Significance

Parapapillary gamma zone (peripapillary sclera without overlying choroid, Bruch''s membrane and deep retinal layers) was related with axial globe elongation and was independent of glaucoma. Delta zone (no blood vessels >50 µm diameter within gamma zone) was present only in highly axially elongated globes and was not related with glaucoma. Beta zone (Bruch''s membrane without RPE) was correlated with glaucoma but not with globe elongation. Since the region with occluded choriocapillaris was smaller than beta zone, complete loss of RPE may have occurred before complete choriocapillaris closure.  相似文献   

16.
To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16–d84], equal to [0.15 µm–0.5 µm], [0.25 µm–1 µm], or [1 µm–9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm–9 µm] aerosol (72%±17%). The [0.15 µm–0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84%±4%). Airborne particles in the range of [0.25 µm–1 µm] showed an intermediate deposition pattern, with 49%±8% in the extrathoracic region and 51%±8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm–9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.  相似文献   

17.
The study aimed to evaluate the test–retest reliability of a newly developed 356 Soccer Shooting Test (356-SST), and the discriminative ability of this test with respect to the soccer players'' proficiency level and leg dominance. Sixty-six male soccer players, divided into three groups based on their proficiency level (amateur, n = 24; novice semi-professional, n = 18; and experienced semi-professional players, n = 24), performed 10 kicks following a two-step run up. Forty-eight of them repeated the test on a separate day. The following shooting variables were derived: ball velocity (BV; measured via radar gun), shooting accuracy (SA; average distance from the ball-entry point to the goal centre), and shooting quality (SQ; shooting accuracy divided by the time elapsed from hitting the ball to the point of entry). No systematic bias was evident in the selected shooting variables (SA: 1.98±0.65 vs. 2.00±0.63 m; BV: 24.6±2.3 vs. 24.5±1.9 m s-1; SQ: 2.92±1.0 vs. 2.93±1.0 m s-1; all p>0.05). The intra-class correlation coefficients were high (ICC = 0.70–0.88), and the coefficients of variation were low (CV = 5.3–5.4%). Finally, all three 356-SST variables identify, with adequate sensitivity, differences in soccer shooting ability with respect to the players'' proficiency and leg dominance. The results suggest that the 356-SST is a reliable and sensitive test of specific shooting ability in men’s soccer. Future studies should test the validity of these findings in a fatigued state, as well as in other populations.  相似文献   

18.

Purpose

To determine the effect of intravenous iron supplementation on performance, fatigue and overall mood in runners without clinical iron deficiency.

Methods

Fourteen distance runners with serum ferritin 30–100 µg·L−1 were randomly assigned to receive three blinded injections of intravenous ferric-carboxymaltose (2 ml, 100 mg, IRON) or normal saline (PLACEBO) over four weeks (weeks 0, 2, 4). Athletes performed a 3,000 m time trial and 10×400 m monitored training session on consecutive days at week 0 and again following each injection. Hemoglobin mass (Hbmass) was assessed via carbon monoxide rebreathing at weeks 0 and 6. Fatigue and mood were determined bi-weekly until week 6 via Total Fatigue Score (TFS) and Total Mood Disturbance (TMD) using the Brief Fatigue Inventory and Brunel Mood Scale. Data were analyzed using magnitude-based inferences, based on the unequal variances t-statistic and Cohen''s Effect sizes (ES).

Results

Serum ferritin increased in IRON only (Week 0: 62.8±21.9, Week 4: 128.1±46.6 µg·L−1; p = 0.002) and remained elevated two weeks after the final injection (127.0±66.3 µg·L−1, p = 0.01), without significant changes in Hbmass. Supplementation had a moderate effect on TMD of IRON (ES -0.77) with scores at week 6 lower than PLACEBO (ES -1.58, p = 0.02). Similarly, at week 6, TFS was significantly improved in IRON vs. PLACEBO (ES –1.54, p = 0.05). There were no significant improvements in 3,000 m time in either group (Week 0 vs. Week 4; Iron: 625.6±55.5 s vs. 625.4±52.7 s; PLACEBO: 624.8±47.2 s vs. 639.1±59.7 s); but IRON reduced their average time for the 10×400 m training session at week 2 (Week 0: 78.0±6.6 s, Week 2: 77.2±6.3; ES–0.20, p = 0.004).

Conclusion

During 6 weeks of training, intravenous iron supplementation improved perceived fatigue and mood of trained athletes with no clinical iron deficiency, without concurrent improvements in oxygen transport capacity or performance.  相似文献   

19.
The serine proteinase α-thrombin potently stimulates reinitiation of DNA synthesis in quiescent Chinese hamster fibroblasts (CCL39 line). 125I-labeled α-thrombin binds rapidly and specifically to CCL39 cells with high affinity (Kd ≈ 4 nM). Binding at 37°C was found to remain stable for 6 h or more during which time no receptor down-regulation, ligand internalization and/or degradation could be detected. The structure of α-thrombin receptors on CCL39 cells was identified by covalently coupling 125I-α-thrombin to intact cells using a homobifunctional cross-linking agent, ethylene glycol bis(succinimidyl succinate). By resolution in sodium dodecyl sulfate polyacrylamide gel electrophoresis we observed the specific labeling of a major α-thrombin-binding site of Mr ≈ 150 000 revealed as a 125I-α-thrombin cross-linked complex of Mr ≈ 180 000. Independent of chemical cross-linking, 125I-α-thrombin also formed a covalent complex with a minor, 35 000 Mr, membrane component identified as protease nexin. Two derivatives of α-thrombin modified at the active site are 1000-fold less than α-thrombin for mitogenicity. These two non-mitogenic derivatives bound to cells with similar affinity and maximal binding capacity as native α-thrombin, and affinity-labeled the receptor subunit of Mr 150 000. When present in large excess, during incubation of cells with α-thrombin, these binding antagonists were ineffective in blocking α-thrombin-induced DNA synthesis. These data suggest that the specific 150 000 Mr binding sites that display high affinity for α-thrombin do not mediate induction of the cellular mitogenic response.  相似文献   

20.

Purpose

Thickness changes of corneal sub-layers after phacoemulsification were investigated by spectral domain ultra-high resolution optical coherence tomography (UHR-OCT).

Methods

The corneas (n = 26) of 26 age-related cataract surgery patients were studied. UHR-OCT was used to evaluate the thickness of Descemet’s Endothelium Complex (DEC), stroma, Bowman’s layer, epithelium, and full cornea at the center (CCT) before, one day after, and one week after surgery. Non-contact specular microscopy measured CCT, endothelial cell density, and morphology.

Results

The DEC, stroma, Bowman’s layer, and epithelium were visualized by UHR-OCT. Before surgery, the DEC in all cases appeared as a translucent space between two smooth opaque lines. One day after surgery, the posterior corneal surfaces in half of the eyes were wavy and irregular. Compared to the baseline, one day after surgery the thickness increases of the DEC, stroma, and CCT were 4.3 ± 2.6 µm, 25.5 ± 24.9 µm, and 32.1 ± 26.6 µm, respectively (P < 0.001). The morphology of the DEC and the CCT recovered to baseline one week after surgery (P > 0.05), but endothelial cell density was 8.7% less than at baseline. There were no significant changes in Bowman’s layer and epithelium after the operation. The pre-operative DEC thickness was positively correlated with the decreased endothelial cell density at 1 day after surgery (r = 0.55, P = 0.003).

Conclusions

The DEC showed edematous thickening and different degrees of morphological changes after phacoemulsification. The DEC deformation and corneal edema recovered by one week after surgery, which indicated recovery of endothelial function. UHR-OCT is a useful tool to evaluate function of the DEC after phacoemulsification. Pre-operative DEC thickness may indicate the integrity of the endothelium and could be used for predicting endothelial cell loss after phacoemulsification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号