首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
枯草杆菌全名枯草芽孢杆菌(Bacillus subtilis),因其优秀的益生特性及芽孢良好的抗逆性而备受研究者青睐,由于芽孢的特殊结构及独特的生理特性,是酶和免疫原等外源蛋白的理想锚定点。采用枯草杆菌进行芽孢表面展示被认为是表达高活性和高稳定性的外源蛋白的方法之一。本文主要对枯草杆菌芽孢表面展示抗原蛋白以生产黏膜疫苗的策略和应用前景进行综述。  相似文献   

2.
Niu  Kai-Min  Kothari  Damini  Lee  Woo-Do  Zhang  Zhihong  Lee  Bong-Joo  Kim  Kang-Woong  Wu  Xin  Han  Hyon-Sob  Khosravi  Sanaz  Lee  Sang-Min  Kim  Soo-Ki 《Probiotics and antimicrobial proteins》2021,13(4):1106-1118

In recent years, considerable and growing attention has been given to the application of host-associated microorganisms as a more suitable source of probiotics in aquaculture sector. Herein, we isolated and screened the olive flounder gut microbiota for beneficial bacterial strains that might serve as potential probiotics in a low fishmeal extruded aquafeed. Among the ten identified isolates, Bacillus amyloliquefaciens SK4079 and B. subtilis SK4082 were screened out based on their heat-resistant ability as well as enzymatic and non-hemolytic activities. Although both strains were well able to utilize carboxymethyl cellulose (CMC), xylan, and soybean meal (SBM) as a single carbon source in the minimal nutrient M9 medium, B. subtilis exhibited significantly higher cellulase, xylanase, and protease activities than B. amyloliquefaciens. The two selected strains were well able to degrade the undesirable anti-nutritional component of the SBM, which would limit its utilization as protein source in aquafeed industry. Significantly higher biofilm formation capacity and notably stronger adhesive interactions with the flounder’s skin mucus were detected in B. subtilis than B. amyloliquefaciens. Immobilization of the spores from the selected strains, in a SBM complex carrier, remarkably enhances their thermal resistance at 120 °C for 5 min and different drying conditions. It was also interesting to learn that the B. subtilis spores could survive and remain viable after being sprayed onto extruded low-fish meal feed pellets for as long as 6 months. Overall, the findings of the present study could help the food/feed industries achieve their goal of developing cost-effective yet efficient products.

  相似文献   

3.
To improve the conventional bacterial surface display systems and to display a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis, which needs pyridoxal phosphate (PLP) for efficient transamination, Bacillus subtilis spore display system with cotG, as an anchoring motif was used. Flow cytometry of the B. subtilis spore-expressing ω-transaminase proved its surface localization on the spore. The enzymatic activity of the spore expressing ω-transaminase was more than 30 times higher than that of the host spore. Protease treatment of the ω-transaminase displaying spores resulted in decreased transaminase activity, which is in keeping with the surface location of the fusion protein, CotG-ω-transaminase.  相似文献   

4.
We developed a novel surface display system based on the CotB anchoring motif in order to express foreign protein on the surface of vegetative Bacillus subtilis cells. CotB is a protein in the B. subtilis spore coat. In this system, three repeats of the immunodominant ovalbumin T-cell epitope (OVA323–339) were linked with the cholera toxin B subunit (CTB) to construct a fusion protein, CTB-OVA epi, which was then fused to the C-terminal of the CotB protein so that CTB-OVA epi was expressed in vegetatively-growing B. subtilis. The expression and localization of the CTB-OVA epi protein was confirmed by western blotting, immunofluorescence microscopy, and flow cytometry. The results indicated that a CotB-based surface display system was successfully used to express the CTB-OVA epi protein on the surface of vegetative B. subtilis cells.  相似文献   

5.
Bacillus subtilis (natto) produces a considerable amount of polyglutamate (PGA). The genetic character of high PGA productivity of B. subtilis (natto) was transferred by DNA-mediated transformation to B. subtilis Marburg 168 which cannot produce PGA. The enzyme activity of γ-glutamyltranspeptidase (γ-GTP) of the three transformants, 3F1, F1-9 and M5B4, was 124, 233 and 147 mU/ml, which is about 25, 250 and 100% of that of the donor strains, respectively. However, other enzyme activities such as those of alanine racemase or transaminase among the parental strains and representative transformants were almost the same.

These results suggested that γ-GTP activity might mainly participate in the biosynthesis of PGA in B. subtilis (natto).  相似文献   

6.

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol β-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol β-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol β-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.

  相似文献   

7.
8.
Bacillus subtilis 1A20 transformed with a hybrid plasmid, pNP150, to which a DNA fragment from Bacillus amyloliquefaciens F was attached, produced a large amount of a neutral protease. To identify the origin of the gene specifying this neutral protease, neutral proteases from B. amyloliquefaciens F, B. subtilis NP58 (a derivative of Marburg 6160), and B. subtilis 1A20 transformed with pNP150 were purified. We investigated their immunological properties and primary structures.

The proteases from these two species were indistinguishable by chromatography, but they were distinguishable from each other by SDS-polyacrylamide gel electrophoresis and double immunodiffusion. Amino acid sequencing of these two proteases by Edman degradation showed that there were four substitutions in the 20-residue amino acid sequence from the N-termini.

Neutral protease from the transformant had the same immunological characteristics and N-terminal amino acid sequence as that from B. amyloliquefaciens. These results meant that the gene in question was derived from a gene specifying the neutral protease in this bacterium.  相似文献   

9.
Bacillus subtilis is a well-established cellular factory for proteins and fine chemicals. In particular, the direct secretion of proteinaceous products into the growth medium greatly facilitates their downstream processing, which is an important advantage of B. subtilis over other biotechnological production hosts, such as Escherichia coli. The application spectrum of B. subtilis is, however, often confined to proteins from Bacillus or closely related species. One of the major reasons for this (current) limitation is the inefficient formation of disulfide bonds, which are found in many, especially eukaryotic, proteins. Future exploitation of B. subtilis to fulfill the ever-growing demand for pharmaceutical and other high-value proteins will therefore depend on overcoming this particular hurdle. Recently, promising advances in this area have been achieved, which focus attention on the need to modulate the cellular levels and activity of thiol-disulfide oxidoreductases (TDORs). These TDORs are enzymes that control the cleavage or formation of disulfide bonds. This review will discuss readily applicable approaches for TDOR modulation and aims to provide leads for further improvement of the Bacillus cell factory for production of disulfide bond-containing proteins.  相似文献   

10.

Background  

Bacillus subtilis is an organism of interest because of its extensive industrial applications, its similarity to pathogenic organisms, and its role as the model organism for Gram-positive, sporulating bacteria. In this work, we introduce a new genome-scale metabolic model of B. subtilis 168 called iBsu1103. This new model is based on the annotated B. subtilis 168 genome generated by the SEED, one of the most up-to-date and accurate annotations of B. subtilis 168 available.  相似文献   

11.
Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis   总被引:5,自引:0,他引:5  
Bacillus subtilis C9 produces a lipopeptide-type biosurfactant, surfactin, and rapidly degrades alkanes up to a chain length of C19. The nucleotide sequence of the sfp gene cloned from B. subtilis C9 was determined and its deduced amino acid sequence showed 100% homology with the sfp gene reported before [Nakano et al. (1992) Mol. Gen. Genet. 232: 313–321]. To transform a non-surfactin producer, B. subtilis 168, to a surfactin producer, the sfp gene cloned from B. subtilis C9 was expressed in B. subtilis 168. The transformed B. subtilis SB103 derivative of the strain 168 was shown to produce surfactin measured by its decrease in surface tension, emulsification activity, and TLC analysis of the surface active compound isolated from the culture broth. Like B. subtilis C9, B. subtilis SB103 containing sfp gene readily degraded aliphatic hydrocarbons (C10–19), though its original strain did not. The addition of surfactin (0.5%, w/v) to the culture of B. subtilis 168 significantly stimulated the biodegradation of hydrocarbons of the chain lengths of 10–19; over 98% of the hydrocarbons tested were degraded within 24 h of incubation. These results indicate that the lipopeptide-type biosurfactant, surfactin produced from B. subtilis enhances the bioavailability of hydrophobic hydrocarbons.  相似文献   

12.
Phosphorylation of CMP and UMP is accomplished in Bacillus subtilis, as in Escherichia coli, by two different enzymes exhibiting characteristic structural and catalytic properties. UMP kinase from B. subtilis is an oligomer whose activity is strictly dependent on GTP. The B. subtilis enzyme is unstable in the absence of UTP, which acts as an allosteric inhibitor. Antibodies raised against recombinant B. subtilis UMP kinase recognized the protein both in soluble extract and in immunoelectron microscopy. UMP kinase from B. subtilis has a peripheral distribution which is related most probably to its role in the synthesis of membrane sugar components and its putative role in cell division.  相似文献   

13.

It has been recently shown, that certain strains/isolates of Bacillus subtilis can be used as a probiotic for humans. The production of the macrocyclic sactibiotic subtilosin in B. subtilis ATCC 6633 is highly regulated. To improve the subtilosin productivity of B. subtilis, different growth conditions were compared for maximal expression of the sbo promoter that regulates the expression of the subtilosin biosynthetic gene cluster. Oxygen-limiting conditions led to a strong increase of sbo promoter activities compared to aerobic conditions, and accordingly, the subtilosin amount determined by reversed phase HPLC (7.8 mg/L) was 15-fold superior to the amount of aerobic grown cultures (0.5 mg/L). A further promising enhancement of the subtilosin yield was achieved using a deletion mutant that is avoiding the general transition state regulator protein AbrB. The subtilosin titer of 42 mg/L produced by ΔabrB cells grown under oxygen-limiting conditions corresponds to an 84-fold increase compared to the subtilosin titer obtained from B. subtilis wild type cells propagated in aerobic conditions. Furthermore, evidence is provided that oxygen-limiting conditions led to a strong decrease in the productivity of the lantipeptide subtilin suggesting contrary regulatory mechanisms for the B. subtilis antimicrobials subtilin and subtilosin.

  相似文献   

14.
Bacillus subtilis is a soil-dwelling bacterium that can interact with a plethora of other microorganisms in its natural habitat. Due to the versatile interactions and its ability to form nanotubes, i.e., recently described membrane structures that trade cytoplasmic content between neighbouring cells, we investigated the potential of HGT from B. subtilis to industrially-relevant members of lactic acid bacteria (LAB). To explore the interspecies HGT events, we developed a co-culturing protocol and provided proof of transfer of a small high copy non-conjugative plasmid from B. subtilis to LABs. Interestingly, the plasmid transfer did not involve conjugation nor activation of the competent state by B. subtilis. Moreover, our study shows for the first time non-conjugative cell-to-cell intraspecies plasmid transfer for non-competent Lactococcus lactis sp. cremoris strains. Our study indicates that cell-to-cell transformation is a ubiquitous form of HGT and can be potentially utilized as an alternative tool for natural (non-GMO) strain improvement.  相似文献   

15.
For the enhancement of lipase stability in organic solvent containing reaction, live immobilization method, using Bacillus subtilis spore as a display vehicle was attempted. Bacillus subtilis coat protein cotE was used as an anchoring motif for the display of lipA and lipB of Bacillus subtilis. Using this motif, lipolytic enzyme Lipase A and Lipase B were functionally displayed on the surface of Bacillus subtilis spore. Purified spore displaying CotE-LipB fusion protein showed higher lipolytic activity compared to that of CotE-LipA fusion protein. The surface localization of Lipase B was verified with flow cytometry and protease accessibility experiment. Spore displayed lipase retained its activity against acetone and benzene which completely deactivated free soluble lipase in the same reaction condition.  相似文献   

16.
ABSTRACT

Antibacterial activities against Staphylococcus aureus and Bacillus subtilis were found in an ethanol fraction of tempe, an Indonesian fermented soybean produced using Rhizopus oligosporus. The ethanol fraction contained free fatty acids, monoglycerides, and fatty acid ethyl esters. Among these substances, linoleic acid and α-linolenic acid exhibited antibacterial activities against S. aureus and B. subtilis, whereas 1-monolinolenin and 2-monolinolenin exhibited antibacterial activity against B. subtilis. The other free fatty acids, 1-monoolein, monolinoleins, ethyl linoleate, and ethyl linolenate did not exhibit bactericidal activities. These results revealed that R. oligosporus produced the long-chain polyunsaturated fatty acids and monolinolenins as antibacterial substances against the Gram-positive bacteria during the fungal growth and fermentation of heat-processed soybean.  相似文献   

17.

The cooperation of Bacillus subtilis strain DKT and Comamonas testosteroni KT5 was investigated for biofilm development and toluenes and chlorobenzenes degradation. Bacillus subtilis strain DKT and C. testosteroni KT5 were co-cultured in liquid media with toluenes and chlorobenzenes to determine the degradation of these substrates and formation of dual-species biofilm used for the degradation process. Bacillus subtilis strain DKT utilized benzene, mono- and dichlorinated benzenes as carbon and energy sources. The catabolism of chlorobenzenes was via hydroxylation, in which chlorine atoms were replaced by hydroxyl groups to form catechol, followed by ring fission via the ortho-cleavage pathway. The investigation of the dual-species biofilm composed of B. subtilis DKT and C. testosteroni KT5 (a toluene and chlorotoluene-degrading isolate with low biofilm formation) showed that B. subtilis DKT synergistically promoted C. testosteroni KT5 to develop biofilm. The bacterial growth in dual-species biofilm overcame the inhibitory effects caused by monochlorobenzene and 2-chlorotoluene. Moreover, the dual-species biofilm showed effective degradability toward the mixture of these substrates. This study provides knowledge about the commensal relationships in a dual-culture biofilm for designing multispecies biofilms applied for the biodegradation of toxic organic substrates that cannot be metabolized by single-organism biofilms.

  相似文献   

18.
The production of extracellular α-amylase in Bacillus subtilis is probably regulated by many genetic elements, such as amyR, tmrA7, pap, amyB and sacU. Additional genetic elements, C-108 and A-2 for production of the α-amylase were found in D-cycloserine and ampicillin resistant mutants (C108 and A2) of B. subtilis 6160, respectively. Strain C108 increased the production of α-amylase about 5 times and protease about 80 times compared to parental 6160 strain. Strain A2 showed a nearly 6-fold increased α-amylase production.

These genetic elements displayed a synergistic effect with other genetic factors in production of extracellular α-amylase when these elements were transferred by DNA mediated transformation. By stepwise introduction of these and other genetic elements into B. subtilis 6160 by transformation and mutation, strains with higher α-amylase producing activity were obtained. The finally obtained strain, T2N26, produced about 1,500-2,000 times more α-amylase than parental 6160 strain.  相似文献   

19.
Bacillus subtilis B3 was found to produce lipopeptides iturins and fengycin that have activity against several plant pathogens such as Fusarium graminearum, Rhizoctonia solani, Rhizoctonia cerealis, and Pyricularia grisea. A 3642-bp genomic region of B. subtilis B3 comprising srfDB3, aspB3, lpaB3, and yczEB3 genes that resulted in biosynthesis of surfactin in B. subtilis 168 was cloned, sequenced, and characterized. Among them, the srfDB3 gene encodes thioesterase, which is required for biosynthesis of surfactin in B. subtilis; the aspB3 gene encodes a putative aspartate aminotransferase-like protein; the lpaB3 encodes phosphopantetheinyl transferase, which shows high identity to the product of lpa-14 gene regulating the biosynthesis of iturin A and surfactin in B. subtilis RB14; the yczEB3 encodes a YczE-like protein with significant similarities in signal peptide and part of the ABC transport system. The genetic regions between the srfD gene and lpa gene from B. subtilis B3 and B. subtilis A13, which produces iturin A, contain an approximate 1-kb nucleotide fragment encoding an aspartate aminotransferase-like protein; however, the relevant regions from B. subtilis 168 and B. subtilis ATCC21332 producing surfactin comprise an approximately 4-kb nucleotide fragment encoding four unknown proteins. There is 73% identity between the Lpa family and the Sfp family, although both are highly conserved.Received: 29 October 2002 / Accepted: 6 December 2002  相似文献   

20.

Background  

B. subtilis is an important organism in the biotechnological application. The efficient expression system is desirable in production of recombinant gene products in B. subtilis. Recently, we developed a new inducible expression system in B. subtilis, which directed by B. subtilis maltose utilization operon promoter P glv . The system demonstrated high-level expression for target proteins in B. subtilis when induced by maltose. However, the system was markedly repressed by glucose. This limited the application of the system as a high-expression tool in biotechnology field. The aim of this study was to further improve the P glv promoter system and enhance its expression strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号