首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cel9B from Paenibacillus barcinonensis is a modular endoglucanase with a novel molecular architecture among family 9 enzymes that comprises a catalytic domain (GH9), a family 3c cellulose-binding domain (CBM3c), a fibronectin III-like domain repeat (Fn31,2), and a C-terminal family 3b cellulose-binding domain (CBM3b). A series of truncated derivatives of endoglucanase Cel9B have been constructed and characterized. Deletion of CBM3c produced a notable reduction in hydrolytic activity, while it did not affect the cellulose-binding properties as CBM3c did not show the ability to bind to cellulose. On the contrary, CBM3b exhibited binding to cellulose. The truncated forms devoid of CBM3b lost cellulose-binding ability and showed a reduced activity on crystalline cellulose, although activity on amorphous celluloses was not affected. Endoglucanase Cel9B produced only a small ratio of insoluble products from filter paper, while most of the reducing ends produced by the enzyme were released as soluble sugars (91%), indicating that it is a processive enzyme. Processivity of Cel9B resides in traits contained in the tandem of domains GH9–CBM3c, although the slightly reduced processivity of truncated form GH9–CBM3c suggests a minor contribution of domains Fn31,2 or CBM3b, not contained in it, on processivity of endoglucanase Cel9B.  相似文献   

2.
Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM) fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis.  相似文献   

3.
Sequence analysis of a Paenibacillus sp. BP-23 recombinant clone coding for a previously described endoglucanase revealed the presence of an additional truncated ORF with homology to family 48 glycosyl hydrolases. The corresponding 3509-bp DNA fragment was isolated after gene walking and cloned in Escherichia coli Xl1-Blue for expression and purification. The encoded enzyme, a cellulase of 1091 amino acids with a deduced molecular mass of 118 kDa and a pI of 4.85, displayed a multidomain organization bearing a canonical family 48 catalytic domain, a bacterial type 3a cellulose-binding module, and a putative fibronectin-III domain. The cloned cellulase, unique among Bacillales and designated Cel48C, was purified through affinity chromatography using its ability to bind Avicel. Maximum activity was achieved at 45 degrees C and pH 6.0 on acid-swollen cellulose, bacterial microcrystalline cellulose, Avicel and cellodextrins, whereas no activity was found on carboxy methyl cellulose, cellobiose, cellotriose, pNP-glycosides or 4-methylumbeliferyl alpha-d-glucoside. Cellobiose was the major product of cellulose hydrolysis, identifying Cel48C as a processive cellobiohydrolase. Although no chromogenic activity was detected from pNP-glycosides, TLC analysis revealed the release of p-nitrophenyl-glycosides and cellodextrins from these substrates, suggesting that Cel48C acts from the reducing ends of the sugar chain. Presence of such a cellobiohydrolase in Paenibacillus sp. BP-23 would contribute to widen up its range of action on natural cellulosic substrates.  相似文献   

4.
Cel5 from marine Hahella chejuensis is composed of glycoside hydrolase family-5 (GH5) catalytic domain (CD) and two carbohydrate binding modules (CBM6-2). The enzyme was expressed in Escherichia coli and purified to homogeneity. The optimum endoglucanase and xylanase activities of recombinant Cel5 were observed at 65 °C, pH 6.5 and 55 °C, pH 5.5, respectively. It exhibited K m of 1.8 and 7.1 mg/ml for carboxymethyl cellulose and birchwood xylan, respectively. The addition of Ca2+ greatly improved thermostability and endoglucanase activity of Cel5. The Cel5 retained 90 % of its endoglucanase activity after 24 h incubation in presence of 5 M concentration of NaCl. Recombinant Cel5 showed production of cellobiose after hydrolysis of cellulosic substrates (soluble/insoluble) and methylglucuronic acid substituted xylooligosaccharides after hydrolysis of glucuronoxylans by endo-wise cleavage. These results indicated that Cel5 as bifunctional enzyme having both processive endoglucanase and xylanase activities. The multidomain structure of Cel5 is clearly distinguished from the GH5 bifunctional glycoside hydrolases characterized to date, which are single domain enzymes. Sequence analysis and homology modeling suggested presence of two conserved binding sites with different substrate specificities in CBM6-2 and a single catalytic site in CD. Residues Glu132 and Glu219 were identified as key catalytic amino acids by sequence alignment and further verified by using site directed mutagenesis. CBM6-2 plays vital role in catalytic activity and thermostability of Cel5. The bifunctional activities and multiple substrate specificities of Cel5 can be utilized for efficient hydrolysis of cellulose and hemicellulose into soluble sugars.  相似文献   

5.
Paenibacillus polymyxa GS01 secretes Cel44C-Man26A as a multifunctional enzyme with cellulase, xylanase, lichenase, and mannanase activities. Cel44C-Man26A consists of 1,352 amino acids in which present a catalytic domain (CD) of the glycosyl hydrolase family 44 (GH44), fibronectin domain type 3 (Fn3), catalytic domain of glycosyl hydrolase family 26 (GH26), and a cellulose-binding module type 3 (CBM3). A truncated Cel44C-Man26A protein, consisting of 549 amino acid residues, reacted as a multifunctional mature enzyme despite the absence of the 10 amino acids containing GH44, Fn3, GH26, and CBM3. However, the multifunctional activity was not found in the mature Cel44C-Man26A protein truncated to less than 548 amino acids. The truncated Cel44C-Man26A proteins showed the optimum pH for the lichenase activity was pH 7.0, pH 6.0 for the xylanase and mannanase, and pH 5.0 for the cellulase. The truncated Cel44C-Man26A proteins exhibited enzymatic activity 40–120% higher than the full-length Cel44C.  相似文献   

6.
A gene (cel4) coding for a cellobiohydrolase II (Ex-4) was isolated from the white rot basidiomycete, Irpex lacteus strain MC-2. The cel4 ORF was composed of 452 amino acid residues and was interrupted by eight introns. Its deduced amino acid sequence revealed a multi domain structure composed of a cellulose-binding domain, a linker, and a catalytic domain belonging to family 6 of glycosyl hydrolases, from the N-terminus. cel4 cDNA was successfully expressed in the yeast Pichia pastoris. Recombinant Ex-4 showed endo-processive degrading activity towards cellulosic substrates, and a synergistic effect in the degradation of Avicel was observed when the enzyme acted together with either cellobiohydrolase I (Ex-1) or endoglucanase (En-1) produced by I. lacteus MC-2.  相似文献   

7.
Tsai CF  Qiu X  Liu JH 《Anaerobe》2003,9(3):131-140
Cellulase family and some other glycosyl hydrolases of anaerobic fungi inhabiting the digestive tract of ruminants are believed to form an enzyme complex called cellulosome. Study of the individual component of cellulosome may shed light on understanding the organization of this complex and its functional mechanism. We have analysed the primary sequences of two cellulase clones, cel5B and cel6A, isolated from the cDNA library of ruminal fungus, Piromyces rhizinflata strain 2301. The deduced amino acid sequences of the catalytic domain of Cel5B, encoded by cel5B, showed homology with the subfamily 4 of the family 5 (subfamily 5(4)) of glycosyl hydrolases, while cel6A encoded Cel6A belonged to family 6 of glycosyl hydrolases. Phylogenetic tree analysis suggested that the genes of subfamily 5(4) glycosyl hydrolases of P. rhizinflata might have been acquired from rumen bacteria. Cel5B and Cel6A were modular enzymes consisting of a catalytic domain and dockerin domain(s), but not a cellulose binding domain. The occurrence of dockerin domains indicated that both enzymes were cellulosome components. The catalytic domain of the Cel5B (Cel5B') and Cel6A (Cel6A') recombinant proteins were purified. The optimal activity conditions with carboxymethyl cellulose (CMC) as the substrate were pH 6.0 and 50 degrees C for Cel5B', and pH 6.0 and 37-45 degrees C for Cel6A'. Both Cel5B' and Cel6A' exhibited activity against CMC, barley beta-glucan, Lichenan, and oat spelt xylan. Cel5B' could also hydrolyse p-nitrophenyl-beta-d-cellobioside, Avicel and filter paper while Cel6A' did not show any activity on these substrates. It is apparent that Cel6A' acted as an endoglucanase and Cel5B' possessed both endoglucanase and exoglucanase activities. No synergic effect was observed for these recombinant enzymes in vitro on Avicel and CMC.  相似文献   

8.
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50°C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu91 and Glu222 may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.  相似文献   

9.
Plant biomass holds a promise for the production of second-generation ethanol via enzymatic hydrolysis, but its utilization as a biofuel resource is currently limited to a large extent by the cost and low efficiency of the cellulolytic enzymes. Considerable efforts have been dedicated to elucidate the mechanisms of the enzymatic process. It is well known that most cellulases possess a catalytic core domain and a carbohydrate binding module (CBM), without which the enzymatic activity can be drastically reduced. However, Cel12A members of the glycosyl hydrolases family 12 (GHF12) do not bear a CBM and yet are able to hydrolyze amorphous cellulose quite efficiently. Here, we use X-ray crystallography and molecular dynamics simulations to unravel the molecular basis underlying the catalytic capability of endoglucanase 3 from Trichoderma harzianum (ThEG3), a member of the GHF12 enzymes that lacks a CBM. A comparative analysis with the Cellulomonas fimi CBM identifies important residues mediating interactions of EG3s with amorphous regions of the cellulose. For instance, three aromatic residues constitute a harboring wall of hydrophobic contacts with the substrate in both ThEG3 and CfCBM structures. Moreover, residues at the entrance of the active site cleft of ThEG3 are identified, which might hydrogen bond to the substrate. We advocate that the ThEG3 residues Asn152 and Glu201 interact with the substrate similarly to the corresponding CfCBM residues Asn81 and Arg75. Altogether, these results show that CBM motifs are incorporated within the ThEG3 catalytic domain and suggest that the enzymatic efficiency is associated with the length and position of the substrate chain, being higher when the substrate interact with the aromatic residues at the entrance of the cleft and the catalytic triad. Our results provide guidelines for rational protein engineering aiming to improve interactions of GHF12 enzymes with cellulosic substrates.  相似文献   

10.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

11.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

12.
Liu Y  Zhang J  Liu Q  Zhang C  Ma Q 《Current microbiology》2004,49(4):234-238
A thermophilic bacterial strain GXN151 which could degrade Avicel efficiently was isolated and identified as Bacillus licheniformis. A genomic library of GXN151 was constructed and two novel endoglucanase genes designated cel9A and cel12A were isolated by screening the library on carboxylmethyl cellulase indicator plates. The analysis of amino acid sequences deduced from the genes indicated that Cel9A consisted of a catalytic domain belonging to glycosyl hydrolase family 9, a linker domain, and a carbohydrate binding module family 3 from N-terminal to C-terminal; Cel12A had only one catalytic domain belonging to glycosyl hydrolase family 12. The combinations of Cel9A and Cel12A produced by the recombinant E. coli exhibited synergistic action against substrates of carboxylmethyl cellulose as well as Avicel.  相似文献   

13.
 A gene library of Cellulomonas pachnodae was constructed in Escherichia coli and was screened for endoglucanase activity. Five endoglucanase-positive clones were isolated that carried identical DNA fragments. The gene, designated cel6A, encoding an endoglucanase enzyme, belongs to the glycosyl hydrolase family 6 (cellulase family B). The recombinant Cel6A had a molecular mass of 53 kDa, a pH optimum of 5.5, and a temperature optimum of 50–55 °C. The recombinant endoglucanase Cel6A bound to crystalline cellulose and beech litter. Based on amino acid sequence similarity, a clear cellulose-binding domain was not distinguished. However, the regions in the Cel6A amino acid sequence at the positions 262–319 and 448–473, which did not show similarity to any of the known family-6 glycosyl hydrolases, may be involved in substrate binding. Received: 14 January 1999 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

14.
Although cellulases have been isolated from various microorganisms, no functional cellulase gene has been reported in the Vibrio genus until now. In this report, a novel endo-β-1,4-glucanase gene, cel5A, 1,362 bp in length, was cloned from a newly isolated bacterium, Vibrio sp. G21. The deduced protein of cel5A contains a catalytic domain of glycosyl hydrolase family 5 (GH5), followed by a cellulose binding domain (CBM2). The GH5 domain shows the highest sequence similarity (69%) to the bifunctional beta 1,4-endoglucanase/cellobiohydrolase from Teredinibacter turnerae T7902. The mature Cel5A enzyme was overexpressed in Escherichia coli and purified to homogeneity. The optimal pH and temperature of the recombinant enzyme were determined to be 6.5–7.5 and 50°C, respectively. Cel5A was stable over a wide range of pH and retained more than 90% of total activity even after treatment in pH 5.5–10.5 for 1 h, indicating high alkali resistance. Moreover, the enzyme was activated after pretreatment with mild alkali, a novel characteristic that has not been previously reported in other cellulases. Cel5A also showed a high level of salt tolerance. Its activity rose to 1.6-fold in 0.5 M NaCl and remained elevated even in 4 M NaCl. Further experimentation demonstrated that the thermostability of Cel5A was improved in 0.4 M NaCl. In addition, Cel5A showed specific activity towards β-1,4-linkage of amorphous region of lignocellulose, and the main final hydrolysis product of carboxymethylcellulose sodium and cellooligosaccharides was cellobiose. As an alkali-activated and salt-tolerant enzyme, Cel5A is an ideal candidate for further research and industrial applications.  相似文献   

15.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(−1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(−2) to Glc(−4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(−2) to Glc(−4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

16.
Two different types of approach were taken to improve the hydrolytic activity towards crystalline cellulose at elevated temperatures of Melanocarpus albomyces Cel7B (Ma Cel7B), a single-module GH-7 family cellobiohydrolase. Structure-guided protein engineering was used to introduce an additional tenth disulphide bridge to the Ma Cel7B catalytic module. In addition, a fusion protein was constructed by linking a cellulose-binding module (CBM) and a linker from the Trichoderma reesei Cel7A to the C terminus of Ma Cel7B. Both approaches proved successful. The disulphide bridge mutation G4C/M70C located near the N terminus, close to the entrance of the active site tunnel of Ma Cel7B, led to improved thermostability (ΔT m = 2.5°C). By adding the earlier found thermostability-increasing mutation S290T (ΔT m = 1.5°C) together with the disulphide bridge mutation, the unfolding temperature was increased by 4°C (mutant G4C/M70C/S290T) compared to that of the wild-type enzyme, thus showing an additive effect on thermostability. Both disulphide mutants had increased activity towards microcrystalline cellulose (Avicel) at 75°C, apparently solely because of their improved thermostability. The addition of a CBM also improved the thermostability (ΔT m = 2.5°C) and caused a clear (sevenfold) increase in the hydrolysis activity of Ma Cel7B towards Avicel at 70°C.  相似文献   

17.
Despite intensive research, the mechanism of the rapid retardation in the rates of cellobiohydrolase (CBH) catalyzed cellulose hydrolysis is still not clear. Interpretation of the hydrolysis data has been complicated by the inability to measure the catalytic constants for CBH‐s acting on cellulose. We developed a method for measuring the observed catalytic constant (kobs) for CBH catalyzed cellulose hydrolysis. It relies on in situ measurement of the concentration of CBH with the active site occupied by the cellulose chain. For that we followed the specific inhibition of the hydrolysis of para‐nitrophenyl‐β‐D ‐lactoside by cellulose. The method was applied to CBH‐s TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium and their isolated catalytic domains. Bacterial microcrystalline cellulose, Avicel, amorphous cellulose, and lignocellulose were used as substrates. A rapid decrease of kobs in time was observed on all substrates. The kobs values for PcCel7D were about 1.5 times higher than those for TrCel7A. In case of both TrCel7A and PcCel7D, the kobs values for catalytic domains were similar to those for intact enzymes. A model where CBH action is limited by the average length of obstacle‐free way on cellulose chain is proposed. Once formed, productive CBH–cellulose complex proceeds with a constant rate determined by the true catalytic constant. After encountering an obstacle CBH will “get stuck” and the rate of further cellulose hydrolysis will be governed by the dissociation rate constant (koff), which is low for processive CBH‐s. Biotechnol. Bioeng. 2010;106: 871–883. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Enzyme engineering was performed to link the β-glucosidase enzyme (BGL1) from Saccharomycopsis fibuligera to the cellulose-binding domain (CBD2) of Trichoderma reesei cellobiohydrolase (CBHII) to investigate the effect of a fungal CBD on the enzymatic characteristics of this non-cellulolytic yeast enzyme. Recombinant enzymes were constructed with single and double copies of CBD2 fused at the N-terminus of BGL1 to mimic the two-domain organization displayed by cellulolytic enzymes in nature. The engineered S. fibuligera β-glucosidases were expressed in Saccharomyces cerevisiae under the control of phosphoglycerate-kinase-1 promoter (PGK1 P ) and terminator (PGK1 T ) and yeast mating pheromone α-factor secretion signal (MFα1 S ). The secreted enzymes were purified and characterized using a range of cellulosic and non-cellulosic substrates to illustrate the effect of the CBD on their enzymatic activity. The results indicated that the recombinant enzymes of BGL1 displayed a 2–4-fold increase in their hydrolytic activity toward cellulosic substrates like avicel, amorphous cellulose, bacterial microcrystalline cellulose, and carboxy methyl cellulose in comparison with the native enzyme. The organization of the CBD in these recombinant enzymes also resulted in enhanced substrate affinity, molecular flexibility and synergistic activity, thereby improving the ability of the enzymes to act on and hydrolyze cellulosic substrates, as characterized by adsorption, kinetics, thermal stability, and scanning electron microscopic analyses.  相似文献   

19.
The heterologous expression of glycosyl hydrolases in bioenergy crops can improve the lignocellulosic conversion process for ethanol production. We attempted to obtain high-level expression of an intact Thermotoga maritima endoglucanase, Cel5A, and CBM6-engineered Cel5A in transgenic tobacco plants for the mass production and autohydrolysis of endoglucanase. Cel5A expression was targeted to different subcellular compartments, namely, the cytosol, apoplast, and chloroplast, using the native form of the pathogenesis-related protein 1a (PR1a) and Rubisco activase (RA) transit peptides. Cel5A transgenic tobacco plants with the chloroplast transit peptide showed the highest average endoglucanase activity and protein accumulation up to 4.5% total soluble protein. Cel5A-CBM6 was targeted to the chloroplast and accumulated up to 5.2% total soluble protein. In terms of the direct conversion of plant tissue into free sugar, the Cel5A-CBM6 transgenic plant was 33% more efficient than the Cel5A transgenic plant. The protein stability of Cel5A and Cel5A-CBM6 in lyophilized leaf material is an additional advantage in the bioconversion process.  相似文献   

20.
Cellulomonas uda efficiently solubilized chitinous substrates with a simple chitinase system composed of an endochitinase, designated ChiA, which hydrolyzed insoluble substrates into long-chain chitooligosaccharides, and an as yet uncharacterized exochitinase activity. ChiA, isolated from culture supernatant fluids, was found to be a glycosylated endochitinase with an apparent molecular mass of approximately 70 kDa and pI of 8.5. The gene encoding ChiA was cloned in Escherichia coli and sequenced, revealing an open reading frame of 1,716 bp encoding a 571-amino-acid protein with a predicted molecular mass of 59.2 kDa. The region upstream of chiA included a conserved –35 hexamer flanked by two direct repeats analogous to those found in many Streptomyces chitinase promoters, and thought to function as binding sequences for regulatory proteins. Analysis of the deduced amino acid sequence showed a modular protein consisting of a signal peptide at its N terminus, a family 2 carbohydrate-binding module (CBM2) that was closely related to the substrate-binding domains of glycosyl hydrolases from distantly related bacteria, and a family 18 glycosyl hydrolase catalytic module related to Streptomyces chitinases. In contrast to the fibronectin type III domains of Streptomyces chitinases, the linker region between modules in ChiA consisted of a long proline- and threonine-rich module, thought to contribute to the glycosylation and flexibility of the mature protein.Abbreviations CBM Carbohydrate-binding module - P-T Proline- and threonine-rich domain - Fn3 Type III repetitive sequences of fibronectin domain - PKD Polycystic kidney disease I domain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号