首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard.

Methodology/Principal Findings

Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch® and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.

Conclusions/Significance

Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs.  相似文献   

2.
Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics.  相似文献   

3.
Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal’s state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.  相似文献   

4.
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.  相似文献   

5.
PURPOSE: Gastric cancer studies indicated a potential correlation between circulating tumor cells (CTCs) in peripheral blood and tumor relapse/metastasis. The prevalence and significance of circulating tumor microemboli (CTM) in gastric cancer remain unknown. We investigated the prevalence and prognostic value of CTCs and CTM for progression-free survival (PFS) and overall survival (OS) in gastric cancer patients. METHODS:Eighty-one gastric cancer patients consented to provide 5 ml of peripheral blood before systematic therapy. CTCs and CTM were isolated using isolation by size of epithelial tumor cells and characterized by cytopathologists. For 41 stage IV gastric cancer patients, CTM was investigated as a potential biomarker to predict prognosis. RESULTS:CTCs were detected in 51 patients; the average count was 1.81. In clinical stage I, II, III, and IV patients, the average CTC counts were 1.40, 0.67, 1.24, and 2.71, respectively. CTM were detected in 3 of 33 clinical stage I to IIIb patients, at an average of 0.12 (0-2). CTM were detected in 13 of 53 clinical stage IIIc to IV patients, at an average of 1.26 (0-22). In stage IV patients, CTM positivity correlated with the CA125 level. PFS and OS in CTM-positive patients were significantly lower than in CTM-negative patients (P < .001). CTM positivity was an independent factor for determining the PFS (P = .016) and OS (P = .003) of stage IV patients in multivariate analysis. Using markers of the epithelial-mesenchymal transition, single CTCs were divided into three phenotypes including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. For CTM, CK?/Vimentin+/CD45? and CK+/Vimentin+/CD45? phenotypes were observed, but the CK+/Vimentin?/CD45? CTM phenotype was not. CA125 was detected in gastric cancer cell lines BGC823 and MGC803. CONCLUSIONS: In stage IV patients, CTM positivity was correlated with serum CA125 level. CTM were an independent predictor of shorter PFS and OS in stage IV patients. Thus, CTM detection may be a useful tool to predict prognosis in stage IV patients.  相似文献   

6.
7.

Background

Epithelial cell adhesion molecule (EpCAM)-based enumeration of circulating tumor cells (CTC) has prognostic value in patients with solid tumors, such as advanced breast, colon, and prostate cancer. However, poor sensitivity has been reported for non-small cell lung cancer (NSCLC). To address this problem, we developed a microcavity array (MCA) system integrated with a miniaturized device for CTC isolation without relying on EpCAM expression. Here, we report the results of a clinical study on CTCs of advanced lung cancer patients in which we compared the MCA system with the CellSearch system, which employs the conventional EpCAM-based method.

Methods

Paired peripheral blood samples were collected from 43 metastatic lung cancer patients to enumerate CTCs using the CellSearch system according to the manufacturer’s protocol and the MCA system by immunolabeling and cytomorphological analysis. The presence of CTCs was assessed blindly and independently by both systems.

Results

CTCs were detected in 17 of 22 NSCLC patients using the MCA system versus 7 of 22 patients using the CellSearch system. On the other hand, CTCs were detected in 20 of 21 small cell lung cancer (SCLC) patients using the MCA system versus 12 of 21 patients using the CellSearch system. Significantly more CTCs in NSCLC patients were detected by the MCA system (median 13, range 0–291 cells/7.5 mL) than by the CellSearch system (median 0, range 0–37 cells/7.5 ml) demonstrating statistical superiority (p = 0.0015). Statistical significance was not reached in SCLC though the trend favoring the MCA system over the CellSearch system was observed (p = 0.2888). The MCA system also isolated CTC clusters from patients who had been identified as CTC negative using the CellSearch system.

Conclusions

The MCA system has a potential to isolate significantly more CTCs and CTC clusters in advanced lung cancer patients compared to the CellSearch system.  相似文献   

8.
A flying spot ultraviolet microscope, employing a fast scan and pulsed operation of the raster, has been used to induce radiation damage in ascites tumor slide cultures, and to study by time-lapse cinematography the progressive stages of cell damage. The cells observed came from a strain (EF7) of the Ehrlich ascites carcinoma. Irradiated cells were found to show a characteristic syndrome of damage, involving blebbing at the cell surface, while control cells in the adjacent areas of the preparation remained unchanged. The end of the blebbing period is marked by swelling of the cells, and the time taken for this phenomenon to occur was used as a measure of the severity of the damage. It was found that the time required for swelling is dependent on the size of the dose employed, as well as on the sensitivity of the cells. This latter sensitivity was found to decline as the physiological age of the tumor increased. If ultraviolet illumination below 255 mµ is excluded, no symptoms of damage occur, even when very large doses are used. These observations are discussed in relation to the nature of the system in the cell which is affected.  相似文献   

9.
The relationship between brain extracellular glucose levels and neuronal activity was evaluated using microdialysis in awake, freely moving rats. The sodium channel blocker tetrodotoxin and the depolarizing agent veratridine were administered through the dialysis probe to provoke local changes in neuronal activity. The extracellular glucose content was significantly increased in the presence of tetrodotoxin and decreased sharply following veratridine application. The systemic injection of a general anaesthetic, chloral hydrate, led to a large and prolonged increase in extracellular glucose levels. The brain extracellular glucose concentration was estimated by comparing dialysate glucose efflux over a range of inlet glucose concentrations. A mean value of 0.47 mM was obtained in five animals. The results are discussed in terms of the coupling between brain glucose supply and metabolism. The changes observed in extracellular glucose levels under various conditions suggest that supply and utilization may be less tightly linked in the awake rat than has previously been postulated.  相似文献   

10.
Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retrieval mechanism ensures complete transfer of CTCs into the molecular assay. Improved sensitivity to the capture antigen was demonstrated by spike-in experiments for three cell lines of varying levels of antigen expression. We obtained spike-in recovery rates of 74%, 75%, and 85% for MDA-MB-231 (low), PC3 (middle), and SKBR3 (high) cell lines. Recovery using matched enumeration protocols and matched samples (PC3) yielded 90% and 40% recovery for the IsoFlux and CellSearch systems, respectively. In matched prostate cancer samples (N = 22), patients presenting more than four CTCs per blood draw were 95% and 36% using IsoFlux and CellSearch, respectively. An assay for detecting KRAS mutations was described along with data from patients with colorectal cancer, of which 87% presented CTCs above the assay's limit of detection (four CTCs). The CTC KRAS mutant rate was 50%, with 46% of patients displaying a CTC KRAS mutational status that differed from the previously acquired tissue biopsy data. The microfluidic system and mutation assay presented here provide a complete workflow to track oncogene mutational changes longitudinally with high success rates.  相似文献   

11.
Current technologies for tumor imaging, such as ultrasound, MRI, PET and CT, are unable to yield high-resolution images for the assessment of nanoparticle uptake in tumors at the microscopic level1,2,3, highlighting the utility of a suitable xenograft model in which to perform detailed uptake analyses. Here, we use high-resolution intravital imaging to evaluate nanoparticle uptake in human tumor xenografts in a modified, shell-less chicken embryo model. The chicken embryo model is particularly well-suited for these in vivo analyses because it supports the growth of human tumors, is relatively inexpensive and does not require anesthetization or surgery 4,5. Tumor cells form fully vascularized xenografts within 7 days when implanted into the chorioallantoic membrane (CAM) 6. The resulting tumors are visualized by non-invasive real-time, high-resolution imaging that can be maintained for up to 72 hours with little impact on either the host or tumor systems. Nanoparticles with a wide range of sizes and formulations administered distal to the tumor can be visualized and quantified as they flow through the bloodstream, extravasate from leaky tumor vasculature, and accumulate at the tumor site. We describe here the analysis of nanoparticles derived from Cowpea mosaic virus (CPMV) decorated with near-infrared fluorescent dyes and/or polyethylene glycol polymers (PEG) 7, 8, 9,10,11. Upon intravenous administration, these viral nanoparticles are rapidly internalized by endothelial cells, resulting in global labeling of the vasculature both outside and within the tumor7,12. PEGylation of the viral nanoparticles increases their plasma half-life, extends their time in the circulation, and ultimately enhances their accumulation in tumors via the enhanced permeability and retention (EPR) effect 7, 10,11. The rate and extent of accumulation of nanoparticles in a tumor is measured over time using image analysis software. This technique provides a method to both visualize and quantify nanoparticle dynamics in human tumors.  相似文献   

12.
循环肿瘤细胞(circulating tumor cells,CTCs)是指从原发肿瘤或转移灶脱落、发生上皮-间质转化进入患者外周血血液循环的恶性肿瘤细胞.CTCs在肿瘤研究和临床诊断上的作用逐渐得到认可,外周血中CTCs存在与否以及数量多少不但可以用于肿瘤的早期诊断,还可以用于评估肿瘤预后、监测肿瘤的转移和复发.微流控芯片作为一个高通量、小型化的细胞实验平台,已被应用于CTCs的分选当中.本文综述了用于CTCs捕获的微流控芯片系统的最新研究进展,着重介绍各类芯片的捕获原理、芯片结构和捕获效率,最后对微流控芯片技术在CTCs分选中的应用前景进行了展望.  相似文献   

13.
Chronic single-unit recordings were obtained from the mitral celllayer of the olfactory bulbs of awake freely moving rats placed in anodorant stream. Over periods up to five days, 618 recordings from 186single neurons were obtained. Responses of individual neurons werefound to be quite variable over time, although this variability wasbelow chance and was not incremental. The responses of nearbyneurons were more similar than expected by chance but less similarthan individual neurons recorded at different times. However,responses of spatially well-separated neurons were more differentthan chance over short time periods. During rapid sniffing,single-unit responses became more variable, and the spatialorganization of responses became less apparent. These results suggestthat neuronal responses in the olfactory bulb are generally quitevariable over time, with this variability increasing during periodsof rapid sniffing. These results are interpreted in the context of adistributed, centrally modulated model of olfactoryprocessing.  相似文献   

14.
In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging.  相似文献   

15.
An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as “imaging biomarkers”, with simultaneous acquisition and analysis of both bright-field (BF) and fluorescent (FL) images at 200 frames per second (fps); by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs). Sample blood of rats in which a prostate cancer cell line (MAT-LyLu) had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1) cell area larger than 200 µm2 and (2) nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3) clusters having more than 3 nuclei were specific for cancer-implanted blood and (4) a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers—cluster area, nuclei area, nuclei number, and ratio of perimeter—can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.  相似文献   

16.

Introduction

The exclusion of circulating tumor cells (CTCs) that have lost epithelial antigens during the epithelial-to-mesenchymal transition (EMT) process by using Epithelial Cell Adhesion Molecule (EpCAM) based capture methods is still a matter of debate. In this study, cells obtained after depletion procedure from blood samples of squamous cell lung cancer (SQCLC) patients were identified based on morphology and characterized with the combination of FISH assessment and immunophenotypic profile.

Materials and Methods

Five mL blood samples, collected from 55 advanced SQCLC patients, were analyzed by a non-EpCAM-based capture method. After depletion of leukocytes and erythroid cells, the negative fraction was characterized by both FISH using a fibroblast growth factor receptor 1 (FGFR1) probe and by immunocytochemistry. Thirty healthy donors were also tested.

Results

Based on morphology (nuclear dimension ≥10 μm, shape and hypercromatic aspect) suspicious circulating cells clearly distinguishable from contaminant leukocytes were observed in 49/55 (89%) SQCLC patients. Thirty-four of the 44 (77%) samples evaluable for FGFR1 FISH showed ≥ 6 FGFR1 gene copy number on average per cell. Vimentin expression involved 43% (18/42) of pooled circulating SQCLC cells, whereas only 29% (14/48) were EpCAM positive. Confocal microscopy confirmed the localization of FGFR1 probe in suspicious circulating cells. Suspicious circulating elements were also observed in healthy donors and did not show any epithelial associated antigens. A significantly lower number of suspicious circulating cells in healthy donors compared to SQCLC patients was found.

Conclusions

Among the heterogeneous cell population isolated by depletion procedure, the coexistence of cells with epithelial and/or mesenchymal phenotype suggests that EMT may participate to transendothelial invasion and migration of tumor cells in advanced SQCLC. The finding of cells with neither EpCAM or EMT phenotype, retrieved after non-EpCAM-based systems, underlines the presence of suspicious elements in the blood of both SQCLC patients and healthy donors. Further phenotyping and molecular analyses are necessary to fully characterize these circulating elements.  相似文献   

17.
Monitoring and describing the physical movements and body postures of animals is one of the most fundamental tasks of ethology. The more precise the observations are the more sophisticated the interpretations can be about the biology of a certain individual or species. Animal-borne data loggers have recently contributed much to the collection of motion-data from individuals, however, the problem of translating these measurements to distinct behavioural categories to create an ethogram is not overcome yet. The objective of the present study was to develop a “behaviour tracker”: a system composed of a multiple sensor data-logger device (with a tri-axial accelerometer and a tri-axial gyroscope) and a supervised learning algorithm as means of automated identification of the behaviour of freely moving dogs. We collected parallel sensor measurements and video recordings of each of our subjects (Belgian Malinois, N=12; Labrador Retrievers, N=12) that were guided through a predetermined series of standard activities. Seven behavioural categories (lay, sit, stand, walk, trot, gallop, canter) were pre-defined and each video recording was tagged accordingly. Evaluation of the measurements was performed by support vector machine (SVM) classification. During the analysis we used different combinations of independent measurements for training and validation (belonging to the same or different individuals or using different training data size) to determine the robustness of the application. We reached an overall accuracy of above 90% perfect identification of all the defined seven categories of behaviour when both training and validation data belonged to the same individual, and over 80% perfect recognition rate using a generalized training data set of multiple subjects. Our results indicate that the present method provides a good model for an easily applicable, fast, automatic behaviour classification system that can be trained with arbitrary motion patterns and potentially be applied to a wide range of species and situations.  相似文献   

18.
循环肿瘤细胞(circulating tumor cell,CTC)是随血液循环一起转运的实体肿瘤细胞,与实体肿瘤的发展、转移、复发和预后等关系密切。然而,CTC数量的稀少使有效检测CTC具有较大的挑战性。微小RNA(microRNA,miRNA)作为一类新发现的基因表达调控分子,在肿瘤的发生、发展、转归等过程中起着重要的作用。CTC关联性miRNA的研究为CTC的检测和肿瘤的诊治开创了新思路。该文介绍了CTC的临床意义和主要分析方法,在CTC关联性miRNA与肿瘤诊断、治疗和预后等方面总结了这类新型肿瘤细胞标志物的研究进展。  相似文献   

19.
Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far–including the gold standard CellSearch—rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1–24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. EpCAMneg dual-positive (CKpos/CD45pos) cells could be traced in 28 out of 29 samples [range 1–480]. By single-cell array-based comparative genomic hybridization we were able to demonstrate the malignant nature of one EpCAMneg subpopulation. In conclusion, we established a novel enhanced CTC enrichment strategy to capture EpCAMneg CTCs from clinical blood samples by targeting various cell surface antigens with antibody mixtures and ECM components.  相似文献   

20.
Microtubules play an important role in many cellular processes, including mitotic spindle formation and cell division. Taxane-based anticancer treatments lead to the stabilization of microtubules, thus preventing the uncontrolled proliferation of tumor cells. One of the striking physical features of taxane-treated cells is the localization of their microtubules, which can be observed via fluorescent microscopy as an intense fluorescent band and are referred to as a microtubule bundle. With the recent advances in capturing and analyzing tumor cells circulating in a patient’s blood system, there is increasing interest in using these cells to examine a patient’s response to treatment. This includes taxanes that are used routinely in clinics to treat prostate, breast, lung, and other cancers. Here, we have used a computational model of microtubule mechanics to investigate self-arrangement patterns of stabilized microtubules, which allowed for the identification of specific combinations of three physical parameters: microtubule stiffness, intracellular viscosity, and cell shape, that can prevent the formation of microtubule bundles in cells with stabilized microtubules, such as taxane-treated cells. We also developed a method to quantify bundling in the whole microtubule aster structure and a way to compare the simulated results to fluorescent images from experimental data. Moreover, we investigated microtubule rearrangement in both suspended and attached cells and showed that the observed final microtubule patterns depend on the experimental protocol. The results from our computational studies can explain the heterogeneous bundling phenomena observed via fluorescent immunostaining from a mechanical point of view without relying on heterogeneous cellular responses to the microtubule-stabilizing drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号