首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

The family of RecQ DNA helicases plays an important role in the maintenance of genomic integrity. Mutations in three of the five known RecQ family members in humans, BLM, WRN and RecQ4, lead to disorders that are characterized by predisposition to cancer and premature aging.

Methodology/Principal Findings

To address the in vivo functions of Drosophila RecQ4 (dRecQ4), we generated mutant alleles of dRecQ4 using the targeted gene knock-out technique. Our data show that dRecQ4 mutants are homozygous lethal with defects in DNA replication, cell cycle progression and cell proliferation. Two sets of experiments suggest that dRecQ4 also plays a role in DNA double strand break repair. First, mutant animals exhibit sensitivity to gamma irradiation. Second, the efficiency of DsRed reconstitution via single strand annealing repair is significantly reduced in the dRecQ4 mutant animals. Rescue experiments further show that both the N-terminal domain and the helicase domain are essential to dRecQ4 function in vivo. The N-terminal domain is sufficient for the DNA repair function of dRecQ4.

Conclusions/Significance

Together, our results show that dRecQ4 is an essential gene that plays an important role in not only DNA replication but also DNA repair and cell cycle progression in vivo.  相似文献   

3.
Gastric cancer development is strongly correlated with infection by Helicobacter pylori possessing the effector protein CagA. Using a transgenic Drosophila melanogaster model, we show that CagA expression in the simple model epithelium of the larval wing imaginal disc causes dramatic tissue perturbations and apoptosis when CagA-expressing and non-expressing cells are juxtaposed. This cell death phenotype occurs through activation of JNK signaling and is enhanced by loss of the neoplastic tumor suppressors in CagA-expressing cells or loss of the TNF homolog Eiger in wild type neighboring cells. We further explored the effects of CagA-mediated JNK pathway activation on an epithelium in the context of oncogenic Ras activation, using a Drosophila model of metastasis. In this model, CagA expression in epithelial cells enhances the growth and invasion of tumors in a JNK-dependent manner. These data suggest a potential role for CagA-mediated JNK pathway activation in promoting gastric cancer progression.  相似文献   

4.
The melanization reaction is a major immune response in Arthropods and involves the rapid synthesis of melanin at the site of infection and injury. A key enzyme in the melanization process is phenoloxidase (PO), which catalyzes the oxidation of phenols to quinones, which subsequently polymerize into melanin. The Drosophila genome encodes three POs, which are primarily produced as zymogens or prophenoloxidases (PPO). Two of them, PPO1 and PPO2, are produced by crystal cells. Here we have generated flies carrying deletions in PPO1 and PPO2. By analyzing these mutations alone and in combination, we clarify the functions of both PPOs in humoral melanization. Our study shows that PPO1 and PPO2 are responsible for all the PO activity in the hemolymph. While PPO1 is involved in the rapid early delivery of PO activity, PPO2 is accumulated in the crystals of crystal cells and provides a storage form that can be deployed in a later phase. Our study also reveals an important role for PPO1 and PPO2 in the survival to infection with Gram-positive bacteria and fungi, underlining the importance of melanization in insect host defense.  相似文献   

5.
In humans, chronic inflammation, severe injury, infection and disease can result in changes in steroid hormone titers and delayed onset of puberty; however the pathway by which this occurs remains largely unknown. Similarly, in insects injury to specific tissues can result in a global developmental delay (e.g. prolonged larval/pupal stages) often associated with decreased levels of ecdysone – a steroid hormone that regulates developmental transitions in insects. We use Drosophila melanogaster as a model to examine the pathway by which tissue injury disrupts developmental progression. Imaginal disc damage inflicted early in larval development triggers developmental delays while the effects are minimized in older larvae. We find that the switch in injury response (e.g. delay/no delay) is coincident with the mid-3rd instar transition – a developmental time-point that is characterized by widespread changes in gene expression and marks the initial steps of metamorphosis. Finally, we show that developmental delays induced by tissue damage are associated with decreased expression of genes involved in ecdysteroid synthesis and signaling.  相似文献   

6.
The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila.  相似文献   

7.
Lactobacillus helveticus SBT2171 (LH2171) is a lactic acid bacterium with high protease activity and used in starter cultures in the manufacture of cheese. We recently reported that consumption of cheese manufactured using LH2171 alleviated symptoms of dextran sodium sulfate (DSS)-induced colitis in mice. In this study, we have examined whether LH2171 itself exerts an inhibitory effect on the excessive proliferation of lymphocytes. We found that LH2171 inhibited the proliferation of LPS-stimulated mouse T and B cells, and the human lymphoma cell lines, Jurkat and BJAB. Cell cycle analysis showed an accumulation of LH2171-treated BJAB cells in the G2/M phase. Further, phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun was reduced by LH2171 in BJAB cells. Subsequently, expression of cell division cycle 2 (CDC2), regulated by the JNK signaling pathway and essential for G2/M phase progression, was inhibited by LH2171. It was also demonstrated that intraperitoneal administration of LH2171 strongly alleviated symptoms of collagen-induced arthritis (CIA) in mice. These findings suggest that LH2171 inhibits the proliferation of lymphocytes through a suppression of the JNK signaling pathway and exerts an immunosuppressive effect in vivo.  相似文献   

8.

Background

Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner.

Principal Findings

Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity.

Conclusions/Significance

The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.  相似文献   

9.
10.
11.
12.
Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.  相似文献   

13.
14.
Diet can affect a spectrum of biological processes ranging from behavior to cellular metabolism. Yet, the precise role of an individual dietary constituent can be a difficult variable to isolate experimentally. A chemically defined food (CDF) permits the systematic evaluation of individual macro- and micronutrients. In addition, CDF facilitates the direct comparison of data obtained independently from different laboratories. Here, we report the development and characterization of a CDF for Drosophila. We show that CDF can support the long-term culture of laboratory strains and demonstrate that this formulation has utility in isolating macronutrient from caloric density requirements in studies of development, longevity and reproduction.  相似文献   

15.

Background

Rho1 is a small GTPase of the Ras superfamily that serves as the central component in a highly conserved signaling pathway that regulates tissue morphogenesis during development in all animals. Since there is tremendous diversity in the upstream signals that can activate Rho1 as well as the effector molecules that carry out its functions, it is important to define relevant Rho1-interacting genes for each morphogenetic event regulated by this signaling pathway. Previous work from our lab and others has shown that Rho signaling is necessary for the morphogenesis of leg imaginal discs during metamorphosis in Drosophila, although a comprehensive identification of Rho1-interacting genes has not been attempted for this process.

Methodology/Principal Findings

We characterized an amorphic allele of Rho1 that displays a poorly penetrant dominant malformed leg phenotype and is capable of being strongly enhanced by Rho1-interacting heterozygous mutations. We then used this allele in a second-site noncomplementation screen with the Exelixis collection of molecularly defined deficiencies to identify Rho1-interacting genes necessary for leg morphogenesis. In a primary screen of 461 deficiencies collectively uncovering ∼50% of the Drosophila genome, we identified twelve intervals harboring Rho1-interacting genes. Through secondary screening we identified six Rho1-interacting genes including three that were previously identified (RhoGEF2, broad, and stubbloid), thereby validating the screen. In addition, we identified Cdc42, Rheb and Sc2 as novel Rho1-interacting genes involved in adult leg development.

Conclusions/Significance

This screen identified well-known and novel Rho1-interacting genes necessary for leg morphogenesis, thereby increasing our knowledge of this important signaling pathway. We additionally found that Rheb may have a unique function in leg morphogenesis that is independent of its regulation of Tor.  相似文献   

16.
ObjectivesAdult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified.Materials and MethodsFlies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms.ResultsHere, we report a member of the chloride channel family, ClCc, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClCc in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway.ConclusionOur findings reveal an ISC‐specific function of ClCc in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.  相似文献   

17.
18.
19.
20.
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a mean survival of 15 months with the current standard of care. Genetic profiling efforts have identified the amplification, overexpression, and mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) in ∼50% of GBM patients. The genetic aberration of wtEGFR is frequently accompanied by the overexpression of a mutant EGFR known as EGFR variant III (EGFRvIII, de2–7EGFR, ΔEGFR), which is expressed in 30% of GBM tumors. The molecular mechanisms of tumorigenesis driven by EGFRvIII overexpression in human tumors have not been fully elucidated. To identify specific therapeutic targets for EGFRvIII driven tumors, it is important to gather a broad understanding of EGFRvIII specific signaling. Here, we have characterized signaling through the quantitative analysis of protein expression and tyrosine phosphorylation across a panel of glioblastoma tumor xenografts established from patient surgical specimens expressing wtEGFR or overexpressing wtEGFR (wtEGFR+) or EGFRvIII (EGFRvIII+). S100A10 (p11), major vault protein, guanylate-binding protein 1(GBP1), and carbonic anhydrase III (CAIII) were identified to have significantly increased expression in EGFRvIII expressing xenograft tumors relative to wtEGFR xenograft tumors. Increased expression of these four individual proteins was found to be correlated with poor survival in patients with GBM; the combination of these four proteins represents a prognostic signature for poor survival in gliomas. Integration of protein expression and phosphorylation data has uncovered significant heterogeneity among the various tumors and has highlighted several novel pathways, related to EGFR trafficking, activated in glioblastoma. The pathways and proteins identified in these tumor xenografts represent potential therapeutic targets for this disease.Glioblastoma multiforme (GBM)1 is the most frequent and aggressive form of primary brain tumor (1). The current standard of care for GBM consists of surgical removal, radiotherapy, and adjuvant chemotherapy (typically temozolomide) (1). However, despite these interventions the prognosis is still poor, with mean survival time at ∼15 months following diagnosis (2). Genetic profiling of GBM tumors has been used to identify multiple distinct genetic aberrations across a diverse array of genes such as the deletion of phosphatase and tensin homolog (PTEN), p16 deletion, and mutation of TP53 (3, 4). Additionally, amplification, overexpression, and/or mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) has been identified to be a key genetic alteration in ∼50% of GBM patients (5). EGFR amplification is often accompanied by the overexpression of a mutant EGFR known as EGFR variant III (EGFRvIII, de2–7EGFR, ΔEGFR), which is expressed in 30% of GBM tumors (68). EGFRvIII is characterized by the deletion of exon 2–7, resulting in an in-frame deletion of 267 amino acid residues from the extracellular domain. This deletion generates a receptor which is unable to bind ligand yet is constitutively, but weakly, active (9). Continuous low level activation leads to impaired internalization and degradation of the receptor, causing prolonged signaling (10). Expression of EGFRvIII in the absence of wtEGFR leads to the transformation of cells in vivo, drives cell proliferation in vitro, and expression of EGFRvIII correlates with poor prognosis in the clinic (6, 11, 12). EGFRvIII has been identified in GBM, lung, ovarian, and breast cancers, but has never been identified in normal tissue (13, 14). Because of the absence of this mutant receptor in normal tissue, EGFRvIII is an attractive therapeutic target. Although EGFR inhibitors, such as erlotinib and gefitinib, inhibit EGFR, EGFRvIII bearing xenograft models and cell lines are resistant to these inhibitors (15, 16). Therapeutic agents directly targeting EGFRvIII in murine GBM xenografts initially resulted in reduced tumor volume and a modest increase in survival (17). However, tumor recurrence was inevitable because of resistance by uncharacterized evasion mechanisms and adaptations (17). We propose that an improved understanding of the system-wide changes in protein expression and signaling caused by EGFRvIII expression should provide insight into specific therapeutic targets for EGFRvIII driven tumors.It is thought that EGFRvIIl enhances tumorigenicity by differential utilization (e.g. altered amplitude and kinetics and potentially novel components or pathways) of signal transduction pathways compared with ligand activated wtEGFR. Quantitative mass spectrometry has previously been applied to the identification of EGFRvIII specific phosphotyrosine signaling across four GBM cell lines expressing titrated levels of EGFRvIII relative to cells expressing the kinase-dead control (18). Cross-activation of EGFRvIII and the c-Met receptor tyrosine kinase is prevalent within these EGFRvIII overexpressing cell lines, revealing an attractive therapeutic strategy (18), which was later extended to include cross-activation of PDGFR (platelet-derived growth factor receptor) (19).Although EGFRvIII signaling has been extensively studied in GBM cell lines, the molecular mechanisms of increased tumorigenesis driven by EGFRvIII overexpression in human tumors have not been fully elucidated (20, 21). In addition, tissue culture conditions dramatically change the genetic and molecular characteristics found in primary human tumors. In particular, EGFRvIII expression is rapidly lost during generation of primary culture cells from GBM tumors. Most of the EGFRvIII-expressing cells lines are a result of stable transfection, rather than endogenous expression, of the mutant receptor (22). Additionally, the micro-environment and cellular heterogeneity of the tumor have a significant impact on the response to therapeutics, yet are poorly reflected in cell culture. As a consequence, quantification of signaling networks in glioblastoma cell lines provide a limited understanding of the signaling networks in GBM tumor samples.To overcome this limitation, the James and Sarkaria labs have generated, from patient surgical specimens, a panel of glioblastoma tumor xenografts that are maintained through serial passaging as subcutaneous xenografts in nude mice (22, 23). Maintenance of GBM tumors in this in vivo setting preserves the genetic features and phenotypes crucial to the tumorigenicity of the primary human tumors (23). With these tumor xenografts it is possible to analyze in vivo signaling networks, predict optimal therapeutic strategies based on these data, and test these predictions in a physiologically relevant system.To quantify signaling networks activated in glioblastoma tumor xenografts and determine the effect of wtEGFR or EGFRvIII expression on these networks, we applied quantitative mass spectrometry to eight human GBM xenografts expressing wtEGFR (wt) or overexpressing wtEGFR (wtEGFR+) or EGFRvIII (EGFRvIII+) implanted into the flanks of nude mice. This analysis led to the identification and quantification of 1588 proteins (across two or more biological replicates) and 225 tyrosine phosphorylation sites on 168 proteins across eight tumor xenografts. Integration of quantitative phosphotyrosine data and protein expression profiles have uncovered the differential regulation of novel proteins and phosphotyrosine sites, which relate to the mode of action of wtEGFR and EGFRvIII overexpression in vivo. Quantification of tyrosine phosphorylation networks revealed signaling specific to each tumor xenograft. These data provide evidence for a significant amount of variation across the eight xenografts, and suggests that optimal therapeutic strategies might be specific to each tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号