首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Kim S  Bang H  Yoo KS  Pike L 《Molecules and cells》2007,23(2):192-197
Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.  相似文献   

6.
7.
Ultraviolet A (UV-A)-mediated regulation of anthocyanin biosynthesis was investigated in swollen hypocotyls of the red turnip 'Tsuda'. The shaded swollen hypocotyls which contained negligible anthocyanin were exposed to artificial light sources including low fluence UV-B, UV-A, blue, red, far-red, red plus UV-A, far-red plus UV-A, and blue plus red. Among these lights, only UV-A induced anthocyanin biosynthesis and co-irradiation of red or far-red with UV-A did not affect the extent of UV-A-induced anthocyanin accumulation. The expression of phenylalanine ammonia lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), flavanone 3-hydroxylase (F3H; EC 1.14.11.9), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), and anthocyanidin synthase (ANS; EC 1.14.11.19) genes was increased with time during a 24 h exposure to UV-A. In contrast, irradiation with red, blue, UV-B, and a combination of blue with red failed to induce CHS expression. Microarray analysis showed that only a few genes, including CHS and F3H, were induced significantly by UV-A, while a separate set of many genes was induced by low fluence UV-B. The UV-A-specific induction of anthocyanin biosynthesis and the unique gene expression profile upon UV-A irradiation as compared with blue and UV-B demonstrated that the observed induction of anthocyanin biosynthesis in red turnips was mediated by a distinct UV-A-specific photoreceptor, but not by phytochromes, UV-A/blue photoreceptors, or UV-B photoreceptors.  相似文献   

8.
9.
10.
Structural and regulatory genes control fruit colors in plants. Real-time quantitative PCR results showed significantly higher expression levels of structural genes (FpCHS, FpDFR, FpANS, and FpUFGT) as well as of the regulatory gene MYB10 in red fruits of Fragaria pentaphylla compared to white fruits. These genes were strongly associated with anthocyanin accumulation within fruits. The full-length sequence of the FpDFR gene in red fruits of F. pentaphylla had a length of 2080 bp, was separated by five introns, and shared 95% homology with the F. vesca DFR sequence. Twenty-seven SNPs were detected in the FpDFR gDNA sequences between red and white fruits. Among these, transition substitutions were more frequent than transversions (66.7% vs. 33.3%), and a larger number of nucleotide variants existed in introns compared to exons (70.4% vs. 29.6%). A Chi-square test showed only three SNPs significantly associated with fruit color. Combined with structural analyses of the FpDFR protein and an expression analysis of the anthocyanin pathway genes, these results indicate that trans-regulation might contribute to color control in F. pentaphylla.  相似文献   

11.
12.
研究了不同颜色果袋对‘云红梨2号’果实着色的影响,比较了不同套袋处理下果皮外观着色、叶绿素、类黄酮、总酚、花色素苷含量以及花色素苷合成相关酶活性的差异.结果表明: 发育期的黑暗处理有利于解袋后梨果皮着色;不同套袋处理中,采前解袋自然光照射下梨果皮中花色素苷含量最高,着色最好,白色纸袋次之.不同套袋处理显著影响果皮中叶绿素、类黄酮、总酚和花色素苷含量,从而影响梨果皮的外观色泽.不同套袋处理的花色素苷合成酶活性差异显著;相关性分析表明,果皮中花色素苷含量与二氢黄酮醇-4-还原酶(DFR)和类黄酮3-O-葡萄糖基转移酶(UFGT)活性呈显著正相关,而与苯丙氨酸解氨酶(PAL)活性相关性不显著.  相似文献   

13.
14.
15.
A candidate gene approach was used to determine the likely molecular identity of the c locus (yellow fruit color) in Fragaria vesca, a diploid (2n=2x=14) strawberry. Using PCR with degenerate primer pairs, intron-containing segments of structural genes coding for chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and one Del-like regulatory gene in the anthocyanin biosynthetic pathway, were amplified, cloned and sequenced. Intron length polymorphisms for each of these genes were detected among three diploid varieties: F. vesca Alpine variety ’Yellow Wonder’ (YW) (Europe); DN1C, a F. vesca clone collected from Northern California; and Fragaria nubicola FRA520, a U.S.D.A. accession collected in Pakistan. Using F2 generations of the crosses DN1C×YW and YW×FRA520 as mapping populations, the six candidate genes were mapped in relation to previously mapped randomly amplified polymorphic DNA (RAPD) markers and morphological markers. The F3H gene was linked without recombination to the c locus in linkage group I, while the other five candidate genes mapped to different linkage groups. These results suggest that the wild-type allele (C) of the c (yellow fruit color) locus encodes an F3H necessary for red fruit color in F. vesca. Received: 28 August 2000 / Accepted: 21 December 2000  相似文献   

16.
花青素代谢途径与植物颜色变异   总被引:2,自引:0,他引:2  
祝志欣  鲁迎青 《植物学报》2016,51(1):107-119
花青素是种子植物呈色的重要色素, 由一系列结构基因编码的酶(CHS、CHI、F3H、F3'H、F3'5'H、DFR、ANS和3GT)催化而成, 随后经过各种修饰被转运至液泡等部位储存。各类器官中差异表达的MYB、bHLH和WDR三种调控因子通过形成MBW复合体直接正调控以上结构基因的表达。这个过程涉及的基因变异常会导致植物的各种颜色变异。在生活中人们广泛利用这些变异品种, 取其丰富色味。造成颜色变异的具体分子机制在很多情况下还不清楚, 但日益积累的个例研究为其中的规律性提供了基础数据。该文概述了花青素的合成、转运过程及其转录调控机制, 探讨了研究颜色变异品种的常用思路及方法。在总结近年工作的基础上, 对生活中常见蔬菜、水果和花卉的颜色变异品种的分子机制进行了综述。  相似文献   

17.
Two types of red pigment, anthocyanins and betacyanins, never occur together in the same plant. Although anthocyanins are widely distributed in higher plants as flower and fruit pigments, betacyanins have replaced anthocyanins in the Caryophyllales. We isolated cDNAs encoding dihydroflavonol 4-reductase (DFR), which is the first enzyme committed to anthocyanin biosynthesis in the flavonoid pathway, from Spinacia oleracea and Phytolacca americana, plants that belong to the Caryophyllales. The deduced amino acid sequence of Spinacia DFR and Phytolacca DFR revealed a high degree of homology with DFRs of anthocyanin-producing plants. The DFR of carnation, an exception in the Caryophyllales that synthesizes anthocyanin, showed the highest level of identity. In the phylogenetic tree, Spinacia DFR and Phytolacca DFR clustered with the DFRs of anthocyanin-synthesizing dicots. Recombinant Spinacia and Phytolacca DFRs expressed in Escherichia coli convert dihydroflavonol to leucoanthocyanidin. The expression and function of DFR in spinach and pokeweed are discussed in relation to the molecular evolution of red pigment biosynthesis in higher plants.  相似文献   

18.
19.
20.
外源腐胺促进苹果果皮花青苷积累的效应   总被引:4,自引:0,他引:4  
为了探讨外源施加腐胺对苹果果皮花青苷合成相关基因的调控效应和果实着色的影响, 摘袋当天对苹果品种红富士(Malus domestica Borkh. ‘Red Fuji’)果实喷施50 mg.L-1腐胺(putrescine, Put), 利用分光光度计和高效液相色谱仪分别对苹果果皮花青苷含量及其组成进行了分析; 利用实时荧光定量PCR法检测了转录调节因子MYB1和5个花青苷合成结构基因的转录水平。结果表明: (1) 外源喷施Put对于苹果果皮中花青苷的积累具有明显的促进效应, 在果实采收时, 处理组果皮中的花青苷含量为对照组的1.9倍; (2) 处理果实的果皮中含有矢车菊素阿拉伯糖苷(cyaniding-3-arabinoside, Cy-3-ara), 而在相同条件下, 对照组中未能检测到Cy-3-ara; (3) Put处理对于转录调节因子MYB1和类黄酮3, 5-糖苷转移酶(UDP-glycose: flavonoid 3-O-glycosyltransferase, UFGT)基因的转录有明显的促进作用, 摘袋后第1天和第3天, Put处理组的MYB1转录水平分别为对照组的1.6和2.0倍, UFGT变化趋势与MYB1类似, 查耳酮异构酶(chalcone isomerase, CHI)、花青素苷元还原酶 (anthocyanidin reductase, ANR)和无色花青素加双氧酶(leucoanthocyanidin dioxygenase, LDOX)等基因的转录水平在Put处理初期也表现为明显上升, 特别是 LDOX基因, 其转录水平在处理后第1天和第3天分别达到对照的10.2和3.8倍。在所研究的基因中, 二氢类黄酮还原酶(dihydroflavonol 4-reductase, DFR)基因是唯一一个经Put处理后其转录水平受到强烈抑制的基因, 且这种抑制作用在摘袋后第3天最为明显, 对照组的DFR转录水平为Put处理组的2.3倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号