首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignocellulosic biomass has considerable potential for the production of fuels and chemicals as a promising alternative to conventional fossil fuels. However, the bioconversion of lignocellulosic biomass to desired products must be improved to reach economic viability. One of the main technical hurdles is the presence of inhibitors in biomass hydrolysates, which hampers the bioconversion efficiency by biorefinery microbial platforms such as Saccharomyces cerevisiae in terms of both production yields and rates. In particular, acetic acid, a major inhibitor derived from lignocellulosic biomass, severely restrains the performance of engineered xylose‐utilizing S. cerevisiae strains, resulting in decreased cell growth, xylose utilization rate, and product yield. In this study, the robustness of XUSE, one of the best xylose‐utilizing strains, was improved for the efficient conversion of lignocellulosic biomass into bioethanol under the inhibitory condition of acetic acid stress. Through adaptive laboratory evolution, we successfully developed the evolved strain XUSAE57, which efficiently converted xylose to ethanol with high yields of 0.43–0.50 g ethanol/g xylose even under 2–5 g/L of acetic stress. XUSAE57 not only achieved twofold higher ethanol yields but also improved the xylose utilization rate by more than twofold compared to those of XUSE in the presence of 4 g/L of acetic acid. During fermentation of lignocellulosic hydrolysate, XUSAE57 simultaneously converted glucose and xylose with the highest ethanol yield reported to date (0.49 g ethanol/g sugars). This study demonstrates that the bioconversion of lignocellulosic biomass by an engineered strain could be significantly improved through adaptive laboratory evolution for acetate tolerance, which could help realize the development of an economically feasible lignocellulosic biorefinery to produce fuels and chemicals.  相似文献   

2.
《PloS one》2014,9(9)
The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.  相似文献   

3.
A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20 mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.  相似文献   

4.
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.  相似文献   

5.
Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass‐to‐ethanol pipeline. Here, the feasibility of scaling‐up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H2O2/g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose‐ and xylose‐utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922–931. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
7.
During second‐generation bioethanol production from lignocellulosic biomass, the desired traits for fermenting microorganisms, such as Saccharomyces cerevisiae, are high xylose utilization and high robustness to inhibitors in lignocellulosic hydrolysates. However, as observed previously, these two traits easily showed the antagonism, one rising and the other falling, in the C6/C5 co‐fermenting S. cerevisiae strain. In this study, LF1 obtained in our previous study is an engineered budding yeast strain with a superior co‐fermentation capacity of glucose and xylose, and was then mutated by atmospheric and room temperature plasma (ARTP) mutagenesis to improve its robustness. The ARTP‐treated cells were grown in 50% (v/v) leachate from lignocellulose pretreatment with high inhibitors content for adaptive evolution. After 30 days, the generated mutant LF1‐6 showed significantly enhanced tolerance, with a six‐fold increase in cell density in the above leachate. Unfortunately, its xylose utilization dropped markedly, indicating the recurrence of the negative correlation between xylose utilization and robustness. To alleviate this antagonism, LF1‐6 cells were iteratively mutated with ARTP mutagenesis and then anaerobically grown using xylose as the sole carbon source, and xylose utilization was restored in the resulting strain 6M‐15. 6M‐15 also exhibited increased co‐fermentation performance of xylose and glucose with the highest ethanol productivity reported to date (0.525 g g?1 h?1) in high‐level mixed sugars (80 g L?1 glucose and 40 g L?1 xylose) with no inhibitors. Meanwhile, its fermentation time was shortened by 8 h compared to that of LF1. During the fermentation of non‐detoxified lignocellulosic hydrolysate with high inhibitor concentrations at pH ~3.5, 6M‐15 can efficiently convert glucose and xylose with an ethanol yield of 0.43 g g?1. 6M‐15 is also regarded as a potential chassis cell for further design of a customized strain suitable for production of second‐generation bioethanol or other high value‐added products from lignocellulosic biomass.  相似文献   

8.
Currently, microbial conversion of lignocellulose‐derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome‐scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole‐genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations’ involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next‐generation biofuels.  相似文献   

9.
In the industrial production of bioethanol from lignocellulosic biomass, a strain of Saccharomyces cerevisiae that can ferment xylose in the presence of inhibitors is of utmost importance. The recombinant, industrial-flocculating S. cerevisiae strain NAPX37, which can ferment xylose, was used as the parent to delete the gene encoding p-nitrophenylphosphatase (PHO13) and overexpress the gene encoding transaldolase (TAL1) to evaluate the synergistic effects of these two genes on xylose fermentation in the presence of weak acid inhibitors, including formic, acetic, or levulinic acids. TAL1 over-expression or PHO13 deletion improved xylose fermentation as well as the tolerance of NAPX37 to all three weak acids. The simultaneous deletion of PHO13 and the over-expression of TAL1 had synergistic effects and improved ethanol production and reduction of xylitol accumulation in the absence and presence of weak acid inhibitors.  相似文献   

10.
To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65 h−1 in yeast extract peptone dextrose medium, and the ethanol yield was 0.45 g g−1 consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production.  相似文献   

11.
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD+-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP+. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP+-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP+-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.  相似文献   

12.
Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) and XYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The gene XKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect of XKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressing XYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate. XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1 overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.  相似文献   

13.

Background

Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST), and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL) media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX)-pretreated corn stover.

Results

The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h), respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST) in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX)-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST) exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST) consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested.

Conclusions

Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight). However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST) is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield.  相似文献   

14.
An industrial ethanol-producing Saccharomyces cerevisiae strain with genes of fungal oxido-reductive pathway needed for xylose fermentation integrated into its genome (YRH1415) was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than YRH1415 strain and able to co-ferment glucose and xylose in the presence of high concentrations of inhibitors resulting from the hydrolysis of lignocellulosic biomass (switchgrass). The rate of xylose consumption did not appear to be affected by the ploidy of strains or the presence of two copies of the xylose fermentation genes but by heterozygosity of alleles for xylose metabolism in YRH1415. Furthermore, inhibitor tolerance was influenced by the heterozygous genome of the industrial strain, which also showed a marked influenced on tolerance to increasing concentrations of toxic compounds, such as furfural. In this work, selection of haploid derivatives was found to be a useful strategy to develop efficient xylose-fermenting industrial yeast strains.  相似文献   

15.
Construction of xylose- and xylo-oligosaccharide-fermenting Saccharomyces cerevisiae strains is important, because hydrolysates derived from lignocellulosic biomass contain significant amounts of these sugars. We have obtained recombinant S. cerevisiae strain MA-D4 (D-XKXDHXR), expressing xylose reductase, xylitol dehydrogenase and xylulokinase. In the present study, we generated recombinant strain D-XSD/XKXDHXR by transforming MA-D4 with a β-xylosidase gene cloned from the filamentous fungus Trichoderma reesei. The intracellular β-xylosidase-specific activity of D-XSD/XKXDHXR was high, while that of the control strain was under the limit of detection. D-XSD/XKXDHXR produced ethanol, and xylose accumulated in the culture supernatant under fermentation in a medium containing xylo-oligosaccharides as sole carbon source. β-Xylosidase-specific activity in D-XSD/XKXDHXR declined due to xylose both in vivo and in vitro. D-XSD/XKXDHXR converted xylo-oligosaccharides in an enzymatic hydrolysate of eucalyptus to ethanol. These results indicate that D-XSD/XKXDHXR efficiently converted xylo-oligosaccharides to xylose and subsequently to ethanol.  相似文献   

16.

Background

Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced.

Results

Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways.

Conclusion

To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.  相似文献   

17.
Towards industrial pentose-fermenting yeast strains   总被引:15,自引:0,他引:15  
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.  相似文献   

18.
The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that specifically metabolize the fermentation inhibitors while preserving the sugars for subsequent use by the fermentation host. The bacterium Cupriavidus basilensis HMF14 was isolated from enrichment cultures with HMF as the sole carbon source and was found to metabolize many of the toxic constituents of lignocellulosic hydrolysate including furfural, HMF, acetate, formate and a host of aromatic compounds. Remarkably, this microorganism does not grow on the most abundant sugars in lignocellulosic hydrolysates: glucose, xylose and arabinose. In addition, C. basilensis HMF14 can produce polyhydroxyalkanoates. Cultivation of C. basilensis HMF14 on wheat straw hydrolysate resulted in the complete removal of furfural, HMF, acetate and formate, leaving the sugar fraction intact. This unique substrate profile makes C. basilensis HMF14 extremely well suited for biological removal of inhibitors from lignocellulosic hydrolysates prior to their use as fermentation feedstock.  相似文献   

19.
Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD+-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.  相似文献   

20.
Saccharomyces cerevisiae strain with excellent xylose-fermenting capacity and inhibitor tolerance is crucial for lignocellulosic ethanol production. In this study, a combined strategy including site-directed mutagenesis, mating, evolutionary engineering, and haploidization was applied to obtain strains with ideal xylose fermentabilities. Haploid industrial strain KFG4-6B was engineered to overexpress endogenous xylulokinase (XK) and heterologous native or mutated xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis. The XR-mutated strain HX57D showed over 12% increase in both xylose consumption rate and ethanol yield compared with the XR-native strain. To improve the xylose uptake, the HX57D-derived diploids were subjected to evolutionary engineering. In comparison with HX57D, evolved diploid Z4X-21-18 achieved 4.5-fold increases in rates of xylose consumption and ethanol production when fermenting xylose. When fermenting mixed sugars, the glucose and xylose uptake rates were 1.4-fold and 8.3-fold, respectively, higher. H18s28, a haploid of Z4X-21-18, enabled a further 10% increase in xylose consumption rate when fermenting xylose only. However, it was inferior to its diploid parent when fermenting mixed sugars. In the presaccharification-simultaneous saccharification and fermentation (P-SSF) of the whole pretreated wheat straw slurry with high contents of multiple inhibitors, Z4X-21-18 produced approximately 42 g/L ethanol with a yield of 0.38 g/g total sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号