共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components. 相似文献
3.
Ewa Bielczyk-Maczyńska Laure Lam Hung Lauren Ferreira Tobias Fleischmann Félix Weis Antonio Fernández-Pevida Steven A. Harvey Neha Wali Alan J. Warren Inês Barroso Derek L. Stemple Ana Cvejic 《PLoS genetics》2015,11(12)
Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9
sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9
sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9
sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9
sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9
sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate. 相似文献
4.
5.
6.
Sandra Missbach Benjamin L. Weis Roman Martin Stefan Simm Markus T. Bohnsack Enrico Schleiff 《PloS one》2013,8(1)
Ribosome biogenesis is well described in Saccharomyces cerevisiae. In contrast only very little information is available on this pathway in plants. This study presents the characterization of five putative protein co-factors of ribosome biogenesis in Arabidopsis thaliana, namely Rrp5, Pwp2, Nob1, Enp1 and Noc4. The characterization of the proteins in respect to localization, enzymatic activity and association with pre-ribosomal complexes is shown. Additionally, analyses of T-DNA insertion mutants aimed to reveal an involvement of the plant co-factors in ribosome biogenesis. The investigated proteins localize mainly to the nucleolus or the nucleus, and atEnp1 and atNob1 co-migrate with 40S pre-ribosomal complexes. The analysis of T-DNA insertion lines revealed that all proteins are essential in Arabidopsis thaliana and mutant plants show alterations of rRNA intermediate abundance already in the heterozygous state. The most significant alteration was observed in the NOB1 T-DNA insertion line where the P-A3 fragment, a 23S-like rRNA precursor, accumulated. The transmission of the T-DNA through the male and female gametophyte was strongly inhibited indicating a high importance of ribosome co-factor genes in the haploid stages of plant development. Additionally impaired embryogenesis was observed in some mutant plant lines. All results support an involvement of the analyzed proteins in ribosome biogenesis but differences in rRNA processing, gametophyte and embryo development suggested an alternative regulation in plants. 相似文献
7.
Yeliz Boglev Andrew P. Badrock Andrew J. Trotter Qian Du Elsbeth J. Richardson Adam C. Parslow Sebastian J. Markmiller Nathan E. Hall Tanya A. de Jong-Curtain Annie Y. Ng Heather Verkade Elke A. Ober Holly A. Field Donghun Shin Chong H. Shin Katherine M. Hannan Ross D. Hannan Richard B. Pearson Seok-Hyung Kim Kevin C. Ess Graham J. Lieschke Didier Y. R. Stainier Joan K. Heath 《PLoS genetics》2013,9(2)
8.
Jér?me Loc'h Magali Blaud Stéphane Réty Simon Lebaron Patrick Deschamps Joseph Bareille Julie Jombart Julien Robert-Paganin Lila Delbos Florian Chardon Elodie Zhang Clément Charenton David Tollervey Nicolas Leulliot 《PLoS biology》2014,12(5)
During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation. 相似文献
9.
Zhihua Li Insuk Lee Emily Moradi Nai-Jung Hung Arlen W. Johnson Edward M. Marcotte 《PLoS biology》2009,7(10)
Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics—an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies—to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes—most with human orthologs—to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process. 相似文献
10.
External loads applied to skeletal muscle cause increases in the protein translation rate, which leads to muscle hypertrophy. Although some studies have demonstrated that increases in the capacity and efficiency of translation are involved in this process, it remains unclear how these two factors are related to the magnitude of muscle hypertrophy. The present study aimed to clarify the roles played by the capacity and efficiency of translation in muscle hypertrophy. We used an improved synergist ablation in which the magnitude of compensatory hypertrophy could be controlled by partial removal of synergist muscles. Male rats were assigned to four groups in which the plantaris muscle was unilaterally subjected to weak (WK), moderate (MO), middle (MI), and strong (ST) overloading by four types of synergist ablation. Fourteen days after surgery, the weight of the plantaris muscle per body weight increased by 8%, 22%, 32% and 45%, in the WK, MO, MI and ST groups, respectively. Five days after surgery, 18+28S rRNA content (an indicator of translational capacity) increased with increasing overload, with increases of 1.8-fold (MO), 2.2-fold (MI), and 2.5-fold (ST), respectively, relative to non-overloaded muscle (NL) in the WK group. rRNA content showed a strong correlation with relative muscle weight measured 14 days after surgery (r = 0.98). The phosphorylated form of p70S6K (a positive regulator of translational efficiency) showed a marked increase in the MO group, but no further increase was observed with further increase in overload (increases of 22.6-fold (MO), 17.4-fold (MI), and 18.2-fold (ST), respectively, relative to NL in the WK group). These results indicate that increases in ribosome biogenesis at the early phase of overloading are strongly dependent on the amount of overloading, and may play an important role in increasing the translational capacity for further gain of muscular size. 相似文献
11.
《Cell cycle (Georgetown, Tex.)》2013,12(23):2917-2927
E2Fs have been historically considered as key interacting factors for the retinoblastoma (Rb) family of pocket proteins, acting as universal regulators of cell cycle progression. Often exhibiting overlapping function, deregulated E2F activity is thought to cancer or cell death. While early reports hypothesized that E2Fs may be capable of regulating distinct functions beyond proliferation, several recent reports have characterized increasingly diverse, context dependent functions for different E2Fs in vivo, often in what appears to a manner beyond traditional cell cycle regulation. Ironically, many of these new functions are still mediated through the classical cell cycle regulatory Rb family of interacting factors. Here we review the recent advances, focusing on differentiation and development, to emphasize that E2F function is likely more complex than the simple model suggests, capable of exhibiting both specificity of function, and roles beyond cell cycle progression in vivo. 相似文献
12.
13.
WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice,Is Essential for Early Chloroplast Development 总被引:4,自引:0,他引:4
Yunlong Wang Chunming Wang Ming Zheng Jia Lyu Yang Xu Xiaohui Li Mei Niu Wuhua Long Di Wang HaiYang Wang William Terzaghi Yihua Wang Jianmin Wan 《Plant physiology》2016,170(4):2110-2123
14.
Mathias Loibl Isabella Klein Michael Prattes Claudia Schmidt Lisa Kappel Gertrude Zisser Anna Gungl Elmar Krieger Brigitte Pertschy Helmut Bergler 《The Journal of biological chemistry》2014,289(7):3913-3922
The drug diazaborine is the only known inhibitor of ribosome biogenesis and specifically blocks large subunit formation in eukaryotic cells. However, the target of this drug and the mechanism of inhibition were unknown. Here we identify the AAA-ATPase Drg1 as a target of diazaborine. Inhibitor binding into the second AAA domain of Drg1 requires ATP loading and results in inhibition of ATP hydrolysis in this site. As a consequence the physiological activity of Drg1, i.e. the release of Rlp24 from pre-60S particles, is blocked, and further progression of cytoplasmic preribosome maturation is prevented. Our results identify the first target of an inhibitor of ribosome biogenesis and provide the mechanism of inhibition of a key step in large ribosomal subunit formation. 相似文献
15.
Jason Talkish Ian Winsten Campbell Aarti Sahasranaman Jelena Jakovljevic John L. Woolford Jr. 《Molecular and cellular biology》2014,34(10):1863-1877
Previous work from our lab suggests that a group of interdependent assembly factors (A3 factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A3 factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA3 pre-rRNA processing, even though the A3 factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A3 factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures. 相似文献
16.
17.
18.
Nip7p Interacts with Nop8p, an Essential Nucleolar Protein Required for 60S Ribosome Biogenesis, and the Exosome Subunit Rrp43p 总被引:11,自引:12,他引:11
下载免费PDF全文

NIP7 encodes a conserved Saccharomyces cerevisiae nucleolar protein that is required for 60S subunit biogenesis (N. I. T. Zanchin, P. Roberts, A. DeSilva, F. Sherman, and D. S. Goldfarb, Mol. Cell. Biol. 17:5001–5015, 1997). Rrp43p and a second essential protein, Nop8p, were identified in a two-hybrid screen as Nip7p-interacting proteins. Biochemical evidence for an interaction was provided by the copurification on immunoglobulin G-Sepharose of Nip7p with protein A-tagged Rrp43p and Nop8p. Cells depleted of Nop8p contained reduced levels of free 60S ribosomes and polysomes and accumulated half-mer polysomes. Nop8p-depleted cells also accumulated 35S pre-rRNA and an aberrant 23S pre-rRNA. Nop8p-depleted cells failed to accumulate either 25S or 27S rRNA, although they did synthesize significant levels of 18S rRNA. These results indicate that 27S or 25S rRNA is degraded in Nop8p-depleted cells after the section containing 18S rRNA is removed. Nip7p-depleted cells exhibited the same defects as Nop8p-depleted cells, except that they accumulated 27S precursors. Rrp43p is a component of the exosome, a complex of 3′-to-5′ exonucleases whose subunits have been implicated in 5.8S rRNA processing and mRNA turnover. Whereas both green fluorescent protein (GFP)-Nop8p and GFP-Nip7p localized to nucleoli, GFP-Rrp43p localized throughout the nucleus and to a lesser extent in the cytoplasm. Distinct pools of Rrp43p may interact both with the exosome and with Nip7p, possibly both in the nucleus and in the cytoplasm, to catalyze analogous reactions in the multistep process of 60S ribosome biogenesis and mRNA turnover. 相似文献
19.
20.
Clarissa A. Henry Bryan D. Crawford Yi-Lin Yan John Postlethwait Mark S. Cooper Merrill B. Hille 《Developmental biology》2001,240(2):474-487
We have cloned zebrafish focal adhesion kinase (Fak) and analyzed its subcellular localization. Fak protein is localized at the cortex of notochord cells and at the notochord-somite boundary. During somitogenesis, Fak protein becomes concentrated at the basal region of epithelial cells at intersomitic boundaries. Phosphorylated Fak protein is seen at both the notochord-somite boundary and intersomitic boundaries, consistent with a role for Fak in boundary formation and maintenance. The localization of Fak protein to the basal region of epithelial cells in knypek;trilobite double mutant embryos shows that polarization of Fak distribution in the somite border cells is independent of internal mesenchymal cells. In addition, we show that neither Notch signaling through Suppressor of Hairless (SuH) nor deltaD is necessary for the wild-type segmental pattern of fak mRNA expression in the anterior paraxial mesoderm. However, nonsegmental expression of fak mRNA occurs with ectopic activation of Notch signaling through SuH and also in fused somite and beamter mutant embryos, indicating that there are multiple regulators of fak mRNA expression. Our results suggest that Fak plays a central role in notochord and somite morphogenesis. 相似文献