首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Th17 cytokine, IL-22, regulates host immune responses to extracellular pathogens. Whether IL-22 plays a role in viral infection, however, is poorly understood. We report here that Il22(-/-) mice were more resistant to lethal West Nile virus (WNV) encephalitis, but had similar viral loads in the periphery compared to wild type (WT) mice. Viral loads, leukocyte infiltrates, proinflammatory cytokines and apoptotic cells in the central nervous system (CNS) of Il22(-/-) mice were also strikingly reduced. Further examination showed that Cxcr2, a chemokine receptor that plays a non-redundant role in mediating neutrophil migration, was significantly reduced in Il22(-/-) compared to WT leukocytes. Expression of Cxcr2 ligands, cxcl1 and cxcl5, was lower in Il22(-/-) brains than wild type mice. Correspondingly, neutrophil migration from the blood into the brain was attenuated following lethal WNV infection of Il22(-/-) mice. Our results suggest that IL-22 signaling exacerbates lethal WNV encephalitis likely by promoting WNV neuroinvasion.  相似文献   

2.
Japanese encephalitis virus (JEV) causes acute central nervous system (CNS) disease in humans, in whom the clinical symptoms vary from febrile illness to meningitis and encephalitis. However, the mechanism of severe encephalitis has not been fully elucidated. In this study, using a mouse model, we investigated the pathogenetic mechanisms that correlate with fatal JEV infection. Following extraneural infection with the JaOArS982 strain of JEV, infected mice exhibited clinical signs ranging from mild to fatal outcome. Comparison of the pathogenetic response between severe and mild cases of JaOArS982-infected mice revealed increased levels of TNF-α in the brains of severe cases. However, unexpectedly, the mortality rate of TNF-α KO mice was significantly increased compared with that of WT mice, indicating that TNF-α plays a protective role against fatal infection. Interestingly, there were no significant differences of viral load in the CNS between WT and TNF-α KO mice. However, exaggerated inflammatory responses were observed in the CNS of TNF-α KO mice. Although these observations were also obtained in IL-10 KO mice, the mortality and enhanced inflammatory responses were more pronounced in TNF-α KO mice. Our findings therefore provide the first evidence that TNF-α has an immunoregulatory effect on pro-inflammatory cytokines in the CNS during JEV infection and consequently protects the animals from fatal disease. Thus, we propose that the increased level of TNF-α in severe cases was the result of severe disease, and secondly that immunopathological effects contribute to severe neuronal degeneration resulting in fatal disease. In future, further elucidation of the immunoregulatory mechanism of TNF-α will be an important priority to enable the development of effective treatment strategies for Japanese encephalitis.  相似文献   

3.
Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.  相似文献   

4.
Death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine kinases, is specifically expressed in T and B cells. In the absence of Drak2, mice are resistant to experimental autoimmune encephalomyelitis due to a decrease in the number of cells infiltrating the CNS. In the present study, we investigated the role of Drak2 in West Nile virus (WNV)-induced encephalitis and found that Drak2(-/-) mice were also more resistant to lethal WNV infection than wild-type mice. Although Drak2(-/-) mice had an increase in the number of IFN-gamma-producing T cells in the spleen after infection, viral levels in the peripheral tissues were not significantly different between these two groups of mice. In contrast, there was a reduced viral load in the brains of Drak2(-/-) mice, which was accompanied by a decrease in the number of Drak2(-/-) CD4(+) and CD8(+) T cells in the brain following WNV infection. Moreover, we detected viral Ags in T cells isolated from the spleen or brain of WNV-infected mice. These results suggest that following a systemic infection, WNV might cross the blood brain barrier and enter the CNS by being carried by infected infiltrating T cells.  相似文献   

5.
West Nile virus (WNV) is an emerging neurotropic flavivirus. We investigated the dynamics of immune cell recruitment in peripheral tissues and in the CNS during WNV encephalitis in an immunocompetent mouse model. In the periphery, immune cell expansion can successfully limit viremia and lymphoid tissue infection. However, viral clearance in the periphery is too late to prevent viral invasion of the CNS. In the CNS, innate immune cells, including microglia/macrophages, NK cells, and plasmacytoid dendritic cells, greatly expand as the virus invades the brain, whereas B and T cells are recruited after viral invasion, and fail to control the spread of the virus. Thus, the onset of WNV encephalitis was correlated both with CNS viral infection and with a large local increase of innate immune cells. Interestingly, we identify a new immune cell type: CD19(+)B220(-) BST-2(+), which we name G8-ICs. These cells appear during peripheral infection and enter the CNS. G8-ICs express high levels of MHC class II, stain for viral Ag, and are localized in the paracortical zone of lymph nodes, strongly suggesting they are previously unidentified APCs that appear in response to viral infection.  相似文献   

6.
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that has become a significant global cause of viral encephalitis. To examine the mechanisms of WNV-induced neuronal death and the importance of apoptosis in pathogenesis, we evaluated the role of a key apoptotic regulator, caspase 3. WNV infection induced caspase 3 activation and apoptosis in the brains of wild-type mice. Notably, congenic caspase 3(-/-) mice were more resistant to lethal WNV infection, although there were no significant differences in the tissue viral burdens or the kinetics of viral spread. Instead, decreased neuronal death was observed in the cerebral cortices, brain stems, and cerebella of caspase 3(-/-) mice. Analogously, primary central nervous system (CNS)-derived neurons demonstrated caspase 3 activation and apoptosis after WNV infection, and treatment with caspase inhibitors or a genetic deficiency in caspase 3 significantly decreased virus-induced death. These studies establish that caspase 3-dependent apoptosis contributes to the pathogenesis of lethal WNV encephalitis and suggest possible novel therapeutic targets to restrict CNS injury.  相似文献   

7.
8.
9.
ABSTRACT: Background Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Findings Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. Conclusions We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed and dysregulated response in the KO mice permits rapid viral dissemination and fatal illness.  相似文献   

10.
The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. Another group of PGC-1alpha KO and WT mice performed 5-wk exercise training. Soleus, WG, and quadriceps were obtained approximately 37 h after the last training session. Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared with WT mice. A single exercise bout increased phosphorylation of AMPK and acetyl-CoA carboxylase-beta and the level of HKII mRNA similarly in WG of KO and WT. In contrast, cyt c mRNA in soleus was upregulated in WT muscles only. Exercise training increased cyt c, COXI, ALAS1, and HKII mRNA and protein levels equally in WT and KO animals, but cyt c, COXI, and ALAS1 expression remained approximately 20% lower in KO animals. In conclusion, lack of PGC-1alpha reduced resting expression of cyt c, COXI, and ALAS1 and exercise-induced cyt c mRNA expression. However, PGC-1alpha is not mandatory for training-induced increases in ALAS1, COXI, and cyt c expression, showing that factors other than PGC-1alpha can exert these adaptations.  相似文献   

11.
Several different mammalian neurotropic viruses produce an age-dependent encephalitis characterized by more severe disease in younger hosts. To elucidate potential factors that contribute to age-dependent resistance to lethal viral encephalitis, we compared central nervous system (CNS) gene expression in neonatal and weanling mice that were either mock infected or infected intracerebrally with a recombinant strain, dsTE12Q, of the prototype alphavirus Sindbis virus. In 1-day-old mice, infection with dsTE12Q resulted in rapidly fatal disease associated with high CNS viral titers and extensive CNS apoptosis, whereas in 4-week-old mice, dsTE12Q infection resulted in asymptomatic infection with lower CNS virus titers and undetectable CNS apoptosis. GeneChip expression comparisons of mock-infected neonatal and weanling mouse brains revealed developmental regulation of the mRNA expression of numerous genes, including some apoptosis regulatory genes, such as the proapoptotic molecules caspase-3 and TRAF4, which are downregulated during development, and the neuroprotective chemokine, fractalkine, which is upregulated during postnatal development. In parallel with increased neurovirulence and increased viral replication, Sindbis virus infection in 1-day-old mice resulted in both a greater number of host inflammatory genes with altered expression and greater changes in levels of host inflammatory gene expression than infection in 4-week-old mice. Only one inflammatory response gene, an expressed sequence tag similar to human ISG12, increased by a greater magnitude in infected 4-week-old mouse brains than in infected 1-day-old mouse brains. Furthermore, we found that enforced neuronal ISG12 expression results in a significant delay in Sindbis virus-induced death in neonatal mice. Together, our data identify genes that are developmentally regulated in the CNS and genes that are differentially regulated in the brains of different aged mice in response to Sindbis virus infection.  相似文献   

12.
West Nile virus (WNV) is an emerging pathogen that causes disease syndromes ranging from a mild flu‐like illness to encephalitis. While the incidence of WNV infection is fairly uniform across age groups, the risk of lethal encephalitis increases with advanced age. Prior studies have demonstrated age‐related, functional immune deficits that limit systemic antiviral immunity and increase mortality; however, the effect of age on antiviral immune responses specifically within the central nervous system (CNS) is unknown. Here, we show that aged mice exhibit increased peripheral organ and CNS tissue viral burden, the latter of which is associated with alterations in activation of both myeloid and lymphoid cells compared with similarly infected younger animals. Aged mice exhibit lower MHCII expression by microglia, and higher levels of PD1 and lower levels of IFNγ expression by WNV‐specific CD8+ T cells in the CNS and CD8+CD45+ cells. These data indicate that the aged CNS exhibits limited local reactivation of T cells during viral encephalitis, which may lead to reduced virologic control at this site.  相似文献   

13.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

14.
Shrestha B  Diamond MS 《Journal of virology》2007,81(21):11749-11757
West Nile virus (WNV) is a neurotropic flavivirus that causes encephalitis, most frequently in elderly and immunocompromised humans. Previous studies demonstrated that CD8+ T cells utilize perforin-dependent cytolytic mechanisms to limit WNV infection. Nonetheless, the phenotype of perforin-deficient CD8+ T cells was not as severe as that of an absence of CD8+ T cells, suggesting additional effector control mechanisms. In this study, we evaluated the contribution of Fas-Fas ligand (FasL) interactions to CD8+ T-cell-mediated control of WNV infection. Notably, the cell death receptor Fas was strongly upregulated on neurons in culture and in vivo after WNV infection. gld mice that were functionally deficient in FasL expression showed increased susceptibility to lethal WNV infection. Although antigen-specific priming of CD8+ T cells in peripheral lymphoid tissues was normal in gld mice, increased central nervous system (CNS) viral burdens and delayed clearance were observed. Moreover, the adoptive transfer of WNV-primed wild-type but not gld CD8+ T cells to recipient CD8(-/-) or gld mice efficiently limited infection in the CNS and enhanced survival rates. Overall, our data suggest that CD8+ T cells also utilize FasL effector mechanisms to contain WNV infection in Fas-expressing neurons in the CNS.  相似文献   

15.
Mycobacterial infection in TLR2 and TLR6 knockout mice   总被引:11,自引:0,他引:11  
To investigate the role of TLR in the development of murine tuberculosis in vivo, TLR2 and TLR6 knockout (KO) mice were infected with Mycobacterium tuberculosis by placing them in the exposure chamber of an airborne infection apparatus. Both TLR2 and TLR6 KO mice survived until sacrifice at 12 weeks after infection. Infected TLR2 KO mice developed granulomatous pulmonary lesions with neutrophil infiltration, which were slightly larger in size than those in wild-type mice. Pulmonary levels of the mRNAs for inducible nitric oxide synthase (iNOS), TNF-alpha, TGF-beta, IL-1beta, and IL-2 were significantly lower, but levels of the mRNAs for IL-4 and IL-6 were higher, than in wild-type (WT) mice. No significant difference was recognized in cytokine mRNA expression between TLR2 KO and WT mice at 12 weeks after infection. DNA binding by NF-kappaB was low in TLR2 KO mice. On the other hand, TLR6 KO mice were not different from WT mice in terms of pulmonary histopathology, mRNA expression and CFU assay. Therefore, TLR2 does not play an essential role in the pathogenesis of murine tuberculosis, although it is important for defense against mycobacterial infection.  相似文献   

16.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

17.
Matrix metalloproteinases (MMPs) participate in remodeling the extracellular matrix and facilitate entry of inflammatory cells into tissues. Infection of the murine central nervous system (CNS) with a neurotropic coronavirus induces encephalitis associated with increased levels of mRNA encoding MMP-3 and MMP-12. Whereas virus-induced MMP-3 expression was restricted to CNS resident astrocytes, MMP-12 mRNA was expressed by both inflammatory cells and CNS resident cells. Immunosuppression increased both MMP-3 and MMP-12 mRNA levels in CNS resident cells, suggesting that the presence of virus rather than inflammation induced protease up-regulation. MMP activity is partially regulated by a small family of genes encoding tissue inhibitors of matrix metalloproteinases (TIMPs); among the TIMPs, only TIMP-1 mRNA expression increased in the CNS following coronavirus infection. During inflammation TIMP-1 mRNA was most prominently expressed by infiltrating cells. By contrast, in the immunosuppressed host TIMP-1 mRNA was expressed by CNS resident cells. Analysis of cytokine and chemokine mRNA induction within the infected CNS of healthy and immunocompromised mice suggested a possible correlation between increased viral replication and increased levels of beta interferon, MMP-3, MMP-12, and TIMP-1 mRNA. CD4+ T cells which localize to the perivascular and subarachnoid spaces were identified as the primary source of TIMP-1 protein. By contrast, protein expression was undetectable in astrocytes or CD8+ T cells, the primary antiviral effectors that localize to the CNS parenchyma in response to infection. These data suggest that in contrast to the results seen with MMPs, inhibition of protease activity via TIMP-1 expression correlates with the differential tissue distribution of T-cell subsets during acute coronavirus-induced encephalitis.  相似文献   

18.
West Nile virus (WNV) is the most-common cause of mosquito-borne encephalitis in the United States. Invasion of the brain by WNV is influenced by viral and host factors, and the molecular mechanism underlying disruption of the blood-brain barrier is likely multifactorial. Here we show that matrix metalloproteinase 9 (MMP9) is involved in WNV entry into the brain by enhancing blood-brain barrier permeability. Murine MMP9 expression was induced in the circulation shortly after WNV infection, and the protein levels remained high even when viremia subsided. In the murine brain, MMP9 expression and its enzymatic activity were upregulated and MMP9 was shown to partly localize to the blood vessels. Interestingly, we also found that cerebrospinal fluid from patients suffering from WNV contained increased MMP9 levels. The peripheral viremia and expression of host cytokines were not altered in MMP9(-/-) mice; however, these animals were protected from lethal WNV challenge. The resistance of MMP9(-/-) mice to WNV infection correlated with an intact blood-brain barrier since immunoglobulin G, Evans blue leakage into brain, and type IV collagen degradation were markedly reduced in the MMP9(-/-) mice compared with their levels in controls. Consistent with this, the brain viral loads, selected inflammatory cytokines, and leukocyte infiltrates were significantly reduced in the MMP9(-/-) mice compared to their levels in wild-type mice. These data suggest that MMP9 plays a role in mediating WNV entry into the central nervous system and that strategies to interrupt this process may influence the course of West Nile encephalitis.  相似文献   

19.
West Nile virus (WNV) is an emerging flavivirus capable of infecting the central nervous system (CNS) and mediating neuronal cell death and tissue destruction. The processes that promote inflammation and encephalitis within the CNS are important for control of WNV disease but, how inflammatory signaling pathways operate to control CNS infection is not defined. Here, we identify IL-1β signaling and the NLRP3 inflammasome as key host restriction factors involved in viral control and CNS disease associated with WNV infection. Individuals presenting with acute WNV infection displayed elevated levels of IL-1β in their plasma over the course of infection, suggesting a role for IL-1β in WNV immunity. Indeed, we found that in a mouse model of infection, WNV induced the acute production of IL-1β in vivo, and that animals lacking the IL-1 receptor or components involved in inflammasome signaling complex exhibited increased susceptibility to WNV pathogenesis. This outcome associated with increased accumulation of virus within the CNS but not peripheral tissues and was further associated with altered kinetics and magnitude of inflammation, reduced quality of the effector CD8+ T cell response and reduced anti-viral activity within the CNS. Importantly, we found that WNV infection triggers production of IL-1β from cortical neurons. Furthermore, we found that IL-1β signaling synergizes with type I IFN to suppress WNV replication in neurons, thus implicating antiviral activity of IL-1β within neurons and control of virus replication within the CNS. Our studies thus define the NLRP3 inflammasome pathway and IL-1β signaling as key features controlling WNV infection and immunity in the CNS, and reveal a novel role for IL-1β in antiviral action that restricts virus replication in neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号