首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ACTH receptor, known as the melanocortin-2 receptor (MC2R), plays an important role in regulating and maintaining adrenocortical function. MC2R is a subtype of the melanocortin receptor (MCR) family and has unique characteristics among MCRs. Endogenous ACTH is the only endogenous agonist for MC2R, whereas the melanocortin peptides α-, β-, and γ-melanocyte-stimulating hormone and ACTH are full agonists for all other MCRs. In this study, we examined the molecular basis of MC2R responsible for ligand selectivity using ACTH analogs and MC2R mutagenesis. Our results indicate that substitution of Phe7 with d-Phe or d-naphthylalanine (d-Nal(2′)) in ACTH(1–24) caused a significant decrease in ligand binding affinity and potency. Substitution of Phe7 with d-Nal(2′) in ACTH(1–24) did not switch the ligand from agonist to antagonist at MC2R, which was observed in MC3R and MC4R. Substitution of Phe7 with d-Phe7 in ACTH(1–17) resulted in the loss of ligand binding and activity. Molecular analysis of MC2R indicated that only mutation of the third transmembrane domain of MC2R resulted in a decrease in d-Phe ACTH binding affinity and potency. Our results suggest that Phe7 in ACTH plays an important role in ligand selectivity and that the third transmembrane domain of MC2R is crucial for ACTH selectivity and potency.  相似文献   

2.

Background

Focal segmental glomerulosclerosis (FSGS) lesions have often been discussed as a negative predictor in idopathic membranous nephropathy (MN). The mechanism of the development of FSGS lesion in MN is still uncertain.

Methods

From 250 cases of MN, 26 cases contained FSGS lesion. We compared the clinicopathological characteristics between MN cases with FSGS lesion [MN-FSGS(+)] and MN without FSGS lesion [MN-FSGS(−)], matched for gender, age, stage of MN.

Results

The glomerular filtration rate (eGFR) was significantly lower in MN-FSGS(+) cases compared to MN-FSGS(−), although nephrotic syndrome, hematuria, and systolic blood pressure levels were not significantly different between the two groups. Pathologically, glomeruli in MN-FSGS(+) cases showed narrowing and loss of glomerular capillaries with separating from GBM or disappearance of CD34+ endothelial cells, and accumulation of extracellular matrix (ECM) in capillary walls, indicating the development of glomerular capillary injury. These findings of endothelial injury were seen even in MN-FSGS(−) cases, but they were more prominent in MN-FSGS(+) than MN-FSGS(−) by computer assessed morphometric analysis. In MN-FSGS(+) cases, 44 out of 534 glomeruli (8.2%) contained FSGS lesions (n = 31, NOS lesion; n = 13, perihilar lesion). Significant thickness of GBM with ECM accumulation was evident in MN-FSGS(+) cases. Podocyte injury with effacement of foot processes was also noted, but the expression of VEGF on podocytes was not different between the two groups, which suggests that the significant thickness of capillary walls may influence the function of VEGF from podocyte resulting in the glomerular capillary injury that contribute to the development of FSGS lesion in MN.

Conclusion

Glomerular capillary injury was seen in all MN cases. Furthermore, the prominent injuries of glomerular capillaries may be associated with the deterioration of eGFR and the formation of FSGS lesions in MN.  相似文献   

3.
The main manifestations of nephrotic syndrome include proteinuria, hypoalbuminemia, edema, hyperlipidemia and lipiduria. Common causes of nephrotic syndrome are diabetic nephropathy, minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) and membranous nephropathy. Among the primary glomerular diseases, MCD is usually sensitive to glucocorticoid treatment, whereas the other diseases show variable responses. Despite the identification of key structural proteins in the glomerular capillary loop which may contribute to defects in ultrafiltration, many of the disease mechanisms of nephrotic syndrome remain unresolved. In this study, we show that the glomerular expression of angiopoietin-like-4 (Angptl4), a secreted glycoprotein, is glucocorticoid sensitive and is highly upregulated in the serum and in podocytes in experimental models of MCD and in the human disease. Podocyte-specific transgenic overexpression of Angptl4 (NPHS2-Angptl4) in rats induced nephrotic-range, and selective, proteinuria (over 500-fold increase in albuminuria), loss of glomerular basement membrane (GBM) charge and foot process effacement, whereas transgenic expression specifically in the adipose tissue (aP2-Angptl4) resulted in increased circulating Angptl4, but no proteinuria. Angptl4(-/-) mice that were injected with lipopolysaccharide (LPS) or nephritogenic antisera developed markedly less proteinuria than did control mice. Angptl4 secreted from podocytes in some forms of nephrotic syndrome lacks normal sialylation. When we fed the sialic acid precursor N-acetyl-D-mannosamine (ManNAc) to NPHS2-Angptl4 transgenic rats it increased the sialylation of Angptl4 and decreased albuminuria by more than 40%. These results suggest that podocyte-secreted Angptl4 has a key role in nephrotic syndrome.  相似文献   

4.

Background

Primary focal segmental glomerulosclerosis (FSGS) is pathological entity which is characterized by idiopathic steroid-resistant nephrotic syndrome (SRNS) and progression to end-stage renal disease (ESRD) in the majority of affected individuals. Currently, there is no practical noninvasive technique to predict different pathological types of glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was investigated.

Methods

NMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n = 25), membranous nephropathy (MN, n = 24), minimal change disease (MCD, n = 14) and IgA nephropathy (IgAN, n = 26), and healthy controls (CON, n = 35). The acquired data were analyzed using principal component analysis (PCA) followed by orthogonal projections to latent structure discriminant analysis (OPLS-DA). Model validity was verified using permutation tests.

Results

FSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose, dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine, phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and β-hydroxyisovalerate decreased. Additionally, FSGS patients had lower urine N-methylnicotinamide levels compared with other glomerulopathies.

Conclusions

NMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS.  相似文献   

5.
The complex cyto-architecture of the podocyte is critical for glomerular permselectivity. The present study characterizes the expression of nestin, an intermediate filament protein, in human kidneys. In normal kidneys, nestin was detected at the periphery of glomerular capillary loops. Colabeling showed nestin was expressed in WT1-positive cells. Within the podocyte, nestin immunoreactivity was present in the cell body and primary process. This was supported by immunoelectron microscopy. Nestin also colocalized with vimentin in the periphery of capillary loops but not in the mesangium. Nestin was not detected in other structures of the adult human kidney. To determine the potential role of nestin in proteinuria, nestin was examined in kidney biopsies from patients with or without proteinuria. These patients were diagnosed with IgA nephropathy with mild mesangial expansion but without proteinuria, IgA nephropathy with proteinuria, membranous nephropathy (MN), and focal segmental glomerular sclerosis (FSGS). The distribution of nestin in these biopsies was similar to that in the normal kidney. Semiquantitative analysis of immunostaining showed that glomerular nestin expression in IgA nephropathy without proteinuria was not different from normal kidney; however, nestin expression in kidneys of patients with IgA nephropathy and proteinuria, or MN and FSGS with proteinuria was significantly reduced compared with normal kidney (P < 0.01). Reduced nestin mRNA expression in the patients with IgA nephropathy with proteinuria and FSGN was also observed by quantitative real-time PCR. These studies suggest that nestin may play an important role in maintaining normal podocyte function in the human kidney.  相似文献   

6.
Patients with primary membranous nephropathy (MN) who experience spontaneous remission of proteinuria generally have an excellent outcome without need of immunosuppressive therapy. It is, however, unclear whether non-nephrotic proteinuria at the time of diagnosis is also associated with good prognosis since a reasonable number of these patients develop nephrotic syndrome despite blockade of the renin-angiotensin system. No clinical or laboratory parameters are available, which allow the assessment of risk for development of nephrotic proteinuria. Phospholipase A2 Receptor antibodies (PLA2R-Ab) play a prominent role in the pathogenesis of primary MN and are associated with persistence of nephrotic proteinuria. In this study we analysed whether PLA2R-Ab levels might predict development of nephrotic syndrome and the clinical outcome in 33 patients with biopsy-proven primary MN and non-nephrotic proteinuria under treatment with blockers of the renin-angiotensin system. PLA2R-Ab levels, proteinuria and serum creatinine were measured every three months. Nephrotic-range proteinuria developed in 18 (55%) patients. At study start (1.2±1.5 months after renal biopsy and time of diagnosis), 16 (48%) patients were positive for PLA2R-Ab. A multivariate analysis showed that PLA2R-Ab levels were associated with an increased risk for development of nephrotic proteinuria (HR = 3.66; 95%CI: 1.39–9.64; p = 0.009). Immunosuppressive therapy was initiated more frequently in PLA2R-Ab positive patients (13 of 16 patients, 81%) compared to PLA2R-Ab negative patients (2 of 17 patients, 12%). PLA2R-Ab levels are associated with higher risk for development of nephrotic-range proteinuria in this cohort of non-nephrotic patients at the time of diagnosis and should be closely monitored in the clinical management.  相似文献   

7.
Bonetto S  Carlavan I  Baty D 《Peptides》2005,26(11):2302-2313
We identified a large number of peptide mimotopes of the adrenocorticotropic hormone (ACTH) and the alpha-melanocyte stimulating hormone (alpha-MSH) to analyze better the structure-function relationships of these hormones with the human MC1 receptor (hMC1R). We have investigated the use of phage-display technology to isolate specific peptides of this receptor by using three monoclonal anti-ACTH antibodies (mAbs). A library of 10(8) phage-peptides displaying randomized decapeptides was constructed and used to select phage-peptides that bind to mAbs. Forty-five phage-peptides have been isolated and from their amino acid sequences, we have identified two consensus sequences, EXFRWGKPA and WGXPVGKP, corresponding to the regions 5-13 and 9-16 of ACTH, respectively. A biological assay on cells expressing the hMC1-R was developed to determine the capacity of phage-peptides to stimulate the receptor. Only two phage-peptides showed detectable activity. Thirty-one peptides were synthesized to analyze their biological effect. We identified two weak agonists, EC50=16 and 11 microM, two strong agonists, EC50=25 and 14 nM and a partial antagonist, IC50=36 microM. This work confirmed the modulator agonist role of the regions 11-12 of alpha-MSH and ACTH, and the importance of the methionine residue at position 4 for the stimulation of the hMC1-R. We also identified analogues of the regions 8-17 of ACTH that exhibited a weak activator effect, and of one analogue of the N-terminal regions 1-9 of ACTH and alpha-MSH having a partial antagonist effect. These results may be useful in the development of potential agonists or antagonists of the hMC1R.  相似文献   

8.
Obesity is an increasingly important global health problem that lacks current treatment options. The melanocortin receptor 4 (MC4R) is a target for obesity therapies because its activation triggers appetite suppression and increases energy expenditure. Cyclotides have been suggested as scaffolds for the insertion and stabilization of pharmaceutically active peptides. In this study, we explored the development of appetite-reducing peptides by synthesizing MC4R agonists based on the insertion of the His-Phe-Arg-Trp sequence into the cyclotide kalata B1. The ability of the analogues to fold similarly to kalata B1 but display MC4R activity were investigated. Four peptides were synthesized using t-butoxycarbonyl peptide chemistry with a C-terminal thioester to facilitate backbone cyclization. The structures of the peptides were found to be similar to kalata B1, evaluated by Hα NMR chemical shifts. KB1(GHFRWG;23–28) had a Ki of 29 nm at the MC4R and was 107 or 314 times more selective over this receptor than MC1R or MC5R, respectively, and had no detectable binding to MC3R. The peptide had higher affinity for the MC4R than the endogenous agonist, α-melanocyte stimulation hormone, but it was less potent at the MC4R, with an EC50 of 580 nm for activation of the MC4R. In conclusion, we synthesized melanocortin analogues of kalata B1 that preserve the structural scaffold and display receptor binding and functional activity. KB1(GHFRWG;23–28) is potent and selective for the MC4R. This compound validates the use of cyclotides as scaffolds and has the potential to be a new lead for the treatment of obesity.  相似文献   

9.
Proteinuria has been recently shown to be an independent risk factor for the progression of chronic nephropathies, but the actual mechanisms by which urinary protein load damages renal tissue in humans remain unsolved. Using real-time RT-PCR method we evaluated intrarenal mRNA expression of various cytokines and chemokines in patients with biopsy-proven IgA nephropathy (IgAN, n=11), membranous nephropathy (MN, n=6) and focal and segmental glomerulosclerosis (FSGS, n=6) who exhibited proteinuria over 0.5 g/day. There was a significant positive correlation between the proteinuria extent and the intrarenal RANTES (regulated upon activation normal T cell expressed and secreted) mRNA expression in patients with IgAN, a similar trend was also observed in patients with MN and FSGS. There were no clear relationships between the proteinuria and intrarenal mRNA expression of tumor necrosis factor alpha, transforming growth factor beta1 and monocyte chemoattractant peptide-1. There were no differences in the pattern of cytokine mRNA expression between different glomerulopathies. In conclusion, our results support the hypothesis that lymphocytes, macrophages and their products provoke tissue injury in response to proteinuria independently of the nature of renal diseases in man.  相似文献   

10.
MC1R and the response of melanocytes to ultraviolet radiation   总被引:5,自引:0,他引:5  
The constitutive color of our skin plays a dramatic role in our photoprotection from solar ultraviolet radiation (UVR) that reaches the Earth and in minimizing DNA damage that gives rise to skin cancer. More than 120 genes have been identified and shown to regulate pigmentation, one of the key genes being melanocortin 1 receptor (MC1R) that encodes the melanocortin 1 receptor (MC1R), a seven-transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Modulation of MC1R function regulates melanin synthesis by melanocytes qualitatively and quantitatively. The MC1R is regulated by the physiological agonists alpha-melanocyte-stimulating hormone (alphaMSH) and adrenocorticotropic hormone (ACTH), and antagonist agouti signaling protein (ASP). Activation of the MC1R by binding of an agonist stimulates the synthesis of eumelanin primarily via activation of adenylate cyclase. The significance of cutaneous pigmentation lies in the photoprotective effect of melanin, particularly eumelanin, against sun-induced carcinogenesis. Epidermal melanocytes and keratinocytes respond to UVR by increasing their expression of alphaMSH and ACTH, which up-regulate the expression of MC1R, and consequently enhance the response of melanocytes to melanocortins. Constitutive skin pigmentation dramatically affects the incidence of skin cancer. The pigmentary phenotype characterized by red hair, fair complexion, inability to tan and tendency to freckle is an independent risk factor for all skin cancers, including melanoma. The MC1R gene is highly polymorphic in human populations, and allelic variation at this locus accounts, to a large extent, for the variation in pigmentary phenotypes and skin phototypes (SPT) in humans. Several allelic variants of the MC1R gene are associated with the red hair and fair skin (RHC) phenotype, and carrying one of these variants is thought to diminish the ability of the epidermis to respond to DNA damage elicited by UVR. The MC1R gene is considered a melanoma susceptibility gene, and its significance in determining the risk for skin cancer is of tremendous interest.  相似文献   

11.

Objective

Sulodexide is a mixture of glycosaminoglycans that may reduce proteinuria in diabetic nephropathy (DN), but its mechanism of action and effect on renal histology is not known. We investigated the effect of sulodexide on disease manifestations in a murine model of type I DN.

Methods

Male C57BL/6 mice were rendered diabetic with streptozotocin. After the onset of proteinuria, mice were randomized to receive sulodexide (1 mg/kg/day) or saline for up to 12 weeks and renal function, histology and fibrosis were examined. The effect of sulodexide on fibrogenesis in murine mesangial cells (MMC) was also investigated.

Results

Mice with DN showed progressive albuminuria and renal deterioration over time, accompanied by mesangial expansion, PKC and ERK activation, increased renal expression of TGF-β1, fibronectin and collagen type I, III and IV, but decreased glomerular perlecan expression. Sulodexide treatment significantly reduced albuminuria, improved renal function, increased glomerular perlecan expression and reduced collagen type I and IV expression and ERK activation. Intra-glomerular PKC-α activation was not affected by sulodexide treatment whereas glomerular expression of fibronectin and collagen type III was increased. MMC stimulated with 30 mM D-glucose showed increased PKC and ERK mediated fibronectin and collagen type III synthesis. Sulodexide alone significantly increased fibronectin and collagen type III synthesis in a dose-dependent manner in MMC and this increase was further enhanced in the presence of 30 mM D-glucose. Sulodexide showed a dose-dependent inhibition of 30 mM D-glucose-induced PKC-βII and ERK phosphorylation, but had no effect on PKC-α or PKC-βI phosphorylation.

Conclusions

Our data demonstrated that while sulodexide treatment reduced proteinuria and improved renal function, it had differential effects on signaling pathways and matrix protein synthesis in the kidney of C57BL/6 mice with DN.  相似文献   

12.
Summary α-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (α-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained α-melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the μ opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

13.
14.
Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11–13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels increased over time with a 3-fold maximum at 12 h compared to naive brain tissue. The effect of α-MSH(11–13) on secondary lesion volume determined in cresyl violet stained sections (intraperitoneal injection 30 min after insult of 1 mg/kg α-MSH(11–13) or 0.9% NaCl) showed a considerable smaller trauma in α-MSH(11–13) injected mice. The expression of the inflammatory markers TNF-α and IL-1β as well as the total amount of Iba-1 positive cells were not reduced. However, cell branch counting of Iba-1 positive cells revealed a reduced activation of microglia. Furthermore, tripeptide injection reduced neuronal apoptosis analyzed by cleaved caspase-3 and NeuN staining. Based on the results single α-MSH(11–13) administration offers a promising neuroprotective property by modulation of inflammation and prevention of apoptosis after traumatic brain injury.  相似文献   

15.
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.Subject terms: Cryoelectron microscopy, Cell signalling  相似文献   

16.

Background

Membranous nephropathy (MN) is a common cause of nephrotic syndrome that may progress to end-stage renal disease (ESRD). The formation of MN involves the in situ formation of subepithelial immune deposits and leads to albuminuria; however, the underlying mechanism of how MN leads to ESRD remains unclear. The aim of this study was to investigate the expression and biological functions of phosphotriesterase-related protein (PTER) in MN.

Results

In the progression of MN, the expression of PTER increased significantly and was mainly expressed in the renal tubular cells. Both mRNA and protein expression levels of PTER were increased in a concentration- and time-dependent manner in the in vitro albuminuria tubular cell model. Silencing the expression of PTER by RNA interference diminished albuminuria-induced inflammatory and pro-fibrotic cytokines production.

Conclusions

Our findings reveal that PTER may sense albuminuria in the progression of MN, induce tubular cell activation and lead to ESRD.  相似文献   

17.
BackgroundIdiopathic membranous nephropathy (MN) is an autoimmune-mediated glomerulonephritis and a common cause of nephrotic syndrome in adults. There are limited available treatments for MN. We assessed the efficacy of resveratrol (RSV) therapy for treatment of MN in a murine model of this disease.MethodsMurine MN was experimentally induced by daily subcutaneous administration of cationic bovine serum albumin, with phosphate-buffered saline used in control mice. MN mice were untreated or given RSV. Disease severity and pathogenesis was assessed by determination of metabolic and histopathology profiles, lymphocyte subsets, immunoglobulin production, oxidative stress, apoptosis, and production of heme oxygenase-1 (HO1).ResultsMN mice given RSV had significantly reduced proteinuria and a marked amelioration of glomerular lesions. RSV also significantly attenuated immunofluorescent staining of C3, although there were no changes of serum immunoglobulin levels or immunocomplex deposition in the kidneys. RSV treatment of MN mice also reduced the production of reactive oxygen species (ROS), reduced cell apoptosis, and upregulated heme oxygenase 1 (HO1). Inhibition of HO1 with tin protoporphyrin IX partially reversed the renoprotective effects of RSV. The HO1 induced by RSV maybe via Nrf2 signaling.ConclusionOur results show that RSV increased the expression of HO1 and ameliorated the effects of membranous nephropathy in a mouse model due to its anti-complement, anti-oxidative, and anti-apoptotic effects. RSV appears to have potential as a treatment for MN.  相似文献   

18.
Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA) and endothelin receptor B (ETB). Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p.) or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p.), atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios). Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.  相似文献   

19.
The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.  相似文献   

20.
The melanocortin-3 receptor (MC3R) is primarily expressed in the hypothalamus and plays an important role in the regulation of energy homeostasis. Recently, some studies demonstrated that MC3R also signals through mitogen-activated protein kinases (MAPKs), especially extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2 signaling is known to alter gene expression, potentially contributing to the prolonged action of melanocortins on energy homeostasis regulation. In the present study, we performed detailed functional studies on 8 novel naturally occurring MC3R mutations recently reported, and the effects of endogenous MC3R agonist, α-melanocyte stimulating hormone (MSH), on ERK1/2 signaling on all 22 naturally occurring MC3R mutations reported to date. We found that mutants D158Y and L299V were potential pathogenic causes to obesity. Four residues, F82, D158, L249 and L299, played critical roles in different aspects of MC3R function. α-MSH exhibited balanced activity in Gs-cAMP and ERK1/2 signaling pathways in 15 of the 22 mutant MC3Rs. The other 7 mutant MC3Rs were biased to either one of the signaling pathways. In summary, we provided novel data about the structure-function relationship of MC3R, identifying residues important for receptor function. We also demonstrated that some mutations exhibited biased signaling, preferentially activating one intracellular signaling pathway, adding a new layer of complexity to MC3R pharmacology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号