首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L−1 of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.  相似文献   

2.
3.
The diatom Phaeodactylum tricornutum produces large quantities of lipids, especially triacylglycerols (TAGs) under nitrogen or phosphorus limitation. In this study, production of lipids and TAGs during this process was compared under conditions with different inputs of inorganic carbon. With an abundant supply of inorganic carbon, considerable accumulation of biomass, lipids, and TAGs was identified after a nitrogen/phosphorus-limiting “induction incubation.” TAGs were still synthesized and accumulated even under inorganic carbon limitation with a cessation in the production of biomass and cellular lipids. This part of accumulated TAGs could be synthesized through recycling and transformation of other lipids such as glycolipids and phospholipids. Additionally, some alterations in the fatty acid profile following TAG accumulation were found. The content of the C16:0 fatty acid increased with decreases in C16:3 and C20:5, which could have been caused by enzymatic selectivity for these fatty acids during the process of TAG synthesis. It was concluded that nitrogen and phosphorus metabolism regulates the synthesis of TAG, while carbon metabolism promotes it by providing sufficient substrates.  相似文献   

4.
A role for diacylglycerol acyltransferase during leaf senescence   总被引:18,自引:0,他引:18  
  相似文献   

5.
Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO2 (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO2 (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch‐based to TAG‐based carbon storage. Biotechnol. Bioeng. 2013; 110: 87–96. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

7.
Changes in fatty acid composition of chloroplast membrane lipids were investigated using tobacco (Nicotiana tabacum L., cv. Samsun) plants subjected to cold hardening for 6 days at 8°C. Under optimal growing temperature (22°C), the lipids of thylakoid membranes were characterized by elevated content of 16:3n-3 and 18:3n-3 fatty acids (FA). Compared to the lipids of chloroplast envelope membranes, the thylakoid lipids were less rich in the content of saturated, mono- and diunsaturated FA. The relative content of unsaturated FA in chloroplast membranes increased substantially during cold hardening, which was mainly due to the accumulation of 18:3n-3 FA. It is concluded that the observed changes in FA composition of chloroplast lipids during cold hardening adjust the fluidity of these membranes to the level sufficient for functioning of tobacco photosynthetic apparatus, which is a prerequisite for accumulation of assimilates and allows the hardened tobacco plants to survive under conditions of hypothermia.  相似文献   

8.
When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)‐ and phosphorus (P)‐starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic‐growth‐phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation‐dependent overexpressor of a Chlamydomonas type‐2 diacylglycerol acyl‐CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up‐regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation–inducible promoter.  相似文献   

9.
Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.  相似文献   

10.
Metabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.  相似文献   

11.
The freshwater green microalga Parietochloris incisa is the richest known plant source of the polyunsaturated fatty acid (PUFA), arachidonic acid (20:4omega6, AA). While many microalgae accumulate triacylglycerols (TAG) in the stationary phase or under certain stress conditions, these TAG are generally made of saturated and monounsaturated fatty acids. In contrast, most cellular AA of P. incisa resides in TAG. Using various inhibitors, we have attempted to find out if the induction of the biosynthesis of AA and the accumulation of TAG are codependent. Salicylhydroxamic acid (SHAM) affected a growth reduction that was accompanied with an increase in the content of TAG from 3.0 to 6.2% of dry weight. The proportion of 18:1 increased sharply in all lipids while that of 18:2 and its down stream products, 18:3omega6, 20:3omega6 and AA, decreased, indicating an inhibition of the Delta12 desaturation of 18:1. Treatment with the herbicide SAN 9785 significantly reduced the proportion of TAG. However, the proportion of AA in TAG, as well as in the polar lipids, increased. These findings indicate that while there is a preference for AA as a building block of TAG, the latter can be produced using other fatty acids, when the production of AA is inhibited. On the other hand, inhibiting TAG construction did not affect the production of AA. In order to elucidate the possible role of AA in TAG we have labeled exponential cultures of P. incisa kept at 25 degrees C with [1-14C]arachidonic acid and cultivated the cultures for another 12 h at 25, 12 or 4 degrees C. At the lower temperatures, labeled AA was transferred from TAG to polar lipids, indicating that TAG of P. incisa may have a role as a depot of AA that can be incorporated into the membranes, enabling the organism to quickly respond to low temperature-induced stress.  相似文献   

12.
13.
Hu Z  Ren Z  Lu C 《Plant physiology》2012,158(4):1944-1954
We previously identified an enzyme, phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), that plays an important role in directing fatty acyl fluxes during triacylglycerol (TAG) biosynthesis. The PDCT mediates a symmetrical interconversion between phosphatidylcholine (PC) and diacylglycerol (DAG), thus enriching PC-modified fatty acids in the DAG pool prior to forming TAG. We show here that PDCT is required for the efficient metabolism of engineered hydroxy fatty acids in Arabidopsis (Arabidopsis thaliana) seeds. When a fatty acid hydroxylase (FAH12) from castor (Ricinus communis) was expressed in Arabidopsis seeds, the PDCT-deficient mutant accumulated only about half the amount of hydroxy fatty acids compared with that in the wild-type seeds. We also isolated a PDCT from castor encoded by the RcROD1 (Reduced Oleate Desaturation1) gene. Seed-specific coexpression of this enzyme significantly increased hydroxy fatty acid accumulation in wild type-FAH12 and in a previously produced transgenic Arabidopsis line coexpressing a castor diacylglycerol acyltransferase 2. Analyzing the TAG molecular species and regiochemistry, along with analysis of fatty acid composition in TAG and PC during seed development, indicate that PDCT acts in planta to enhance the fluxes of fatty acids through PC and enrich the hydroxy fatty acids in DAG, and thus in TAG. In addition, PDCT partially restores the oil content that is decreased in FAH12-expressing seeds. Our results add a new gene in the genetic toolbox for efficiently engineering unusual fatty acids in transgenic oilseeds.  相似文献   

14.
Marine hydrocarbonoclastic bacteria, like Alcanivorax borkumensis, play a globally important role in bioremediation of petroleum oil contamination in marine ecosystems. Accumulation of storage lipids, serving as endogenous carbon and energy sources during starvation periods, might be a potential adaptation mechanism for coping with nutrient limitation, which is a frequent stress factor challenging those bacteria in their natural marine habitats. Here we report on the analysis of storage lipid biosynthesis in A. borkumensis strain SK2. Triacylglycerols (TAGs) and wax esters (WEs), but not poly(hydroxyalkanoic acids), are the principal storage lipids present in this and other hydrocarbonoclastic bacterial species. Although so far assumed to be a characteristic restricted to gram-positive actinomycetes, substantial accumulation of TAGs corresponding to a fatty acid content of more than 23% of the cellular dry weight is the first characteristic of large-scale de novo TAG biosynthesis in a gram-negative bacterium. The acyltransferase AtfA1 (ABO_2742) exhibiting wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) activity plays a key role in both TAG and WE biosynthesis, whereas AtfA2 (ABO_1804) was dispensable for storage lipid formation. However, reduced but still substantial residual TAG levels in atfA1 and atfA2 knockout mutants compellingly indicate the existence of a yet unknown WS/DGAT-independent alternative TAG biosynthesis route. Storage lipids of A. borkumensis were enriched in saturated fatty acids and accumulated as insoluble intracytoplasmic inclusions exhibiting great structural variety. Storage lipid accumulation provided only a slight growth advantage during short-term starvation periods but was not required for maintaining viability and long-term persistence during extended starvation phases.  相似文献   

15.
The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) is the key enzyme in storage lipid accumulation in the gram-negative bacterium Acinetobacter calcoaceticus ADP1, mediating wax ester, and to a lesser extent, triacylglycerol (TAG) biosynthesis. Saccharomyces cerevisiae accumulates TAGs and steryl esters as storage lipids. Four genes encoding a DGAT (Dga1p), a phospholipid:diacylglycerol acyltransferase (Lro1p) and two acyl-coenzyme A:sterol acyltransferases (ASATs) (Are1p and Are2p) are involved in the final esterification steps in TAG and steryl ester biosynthesis in this yeast. In the quadruple mutant strain S. cerevisiae H1246, the disruption of DGA1, LRO1, ARE1, and ARE2 leads to an inability to synthesize storage lipids. Heterologous expression of WS/DGAT from A. calcoaceticus ADP1 in S. cerevisiae H1246 restored TAG but not steryl ester biosynthesis, although high levels of ASAT activity could be demonstrated for WS/DGAT expressed in Escherichia coli XL1-Blue in radiometric in vitro assays with cholesterol and ergosterol as substrates. In addition to TAG synthesis, heterologous expression of WS/DGAT in S. cerevisiae H1246 resulted also in the accumulation of fatty acid ethyl esters as well as fatty acid isoamyl esters. In vitro studies confirmed that WS/DGAT is capable of utilizing a broad range of alcohols as substrates comprising long-chain fatty alcohols like hexadecanol as well as short-chain alcohols like ethanol or isoamyl alcohol. This study demonstrated the highly unspecific acyltransferase activity of WS/DGAT from A. calcoaceticus ADP1, indicating the broad biocatalytic potential of this enzyme for biotechnological production of a large variety of lipids in vivo in prokaryotic as well as eukaryotic expression hosts.  相似文献   

16.
Engineering accumulation of triacylglycerol (TAG) in vegetative tissues has been recently proposed as a promising strategy for increasing plant oil production. However, little is known about regulatory mechanisms involved in increasing oil production in plant vegetative tissues. In this study, expression of NtMGD1 encoding a major biosynthetic enzyme for the chloroplast membrane lipid was inhibited by RNAi interference in tobacco. Furthermore, AtDGAT1, a rate-regulating gene involved in TAG biosynthesis, was ectopically overexpressed. Results showed that leaf TAG accumulations were significantly increased both by NtMGD1 RNAi and AtDGAT1 overexpression. However, combination of AtDGAT1 overexpression with NtMGD1 RNAi did not result in additive increase in TAG accumulation in leaves than AtDGAT1 overexpression or NtMGD1 RNAi alone. In addition, reduction of monogalactosyldiacylglycerol (MGDG) biosynthesis by NtMGD1 RNAi was relieved by AtDGAT1 overexpression. Expression of lipid transfer protein (LTP) was upregulated both by AtDGAT1 overexpression and NtMGD1 RNAi and correlated with increased oil accumulation in leaves. Our results indicated that fatty acids deesterified from chloroplast membrane galactolipids could be redirected into TAG. TAG is an energy-dense molecule that might act as a storage pool for carbohydrate. This membrane lipid remodeling may represent an adaptive response that enables plant cells to avoid toxic effects of free fatty acids.  相似文献   

17.
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.  相似文献   

18.
Two different strains of microalgae, one raphidophyte and one dinoflagellate, were tested under different abiotic conditions with the goal of enhancing lipid production. Whereas aeration was crucial for biomass production, nitrogen deficiency and temperature were found to be the main abiotic parameters inducing the high-level cellular accumulation of neutral lipids. Net neutral lipid production and especially triacylglycerol (TAG) per cell were higher in microalgae (>200% in Alexandrium minutum, and 30% in Heterosigma akashiwo) under treatment conditions (25°C; 330 μM NaNO3) than under control conditions (20°C; 880 μM NaNO3). For both algal species, oil production (free fatty acids plus TAG fraction) was also higher under treatment conditions (57 mg L−1 in A. minutum and 323 mg L−1 in H. akashiwo). Despite the increased production and accumulation of lipids in microalgae, the different conditions did not significantly change the fatty acids profiles of the species analyzed. These profiles consisted of saturated fatty acids (SAFA) and polyunsaturated fatty acids (PUFA) in significant proportions. However, during the stationary phase, the concentrations per cell of some PUFAs, especially arachidonic acid (C20:4n6), were higher in treated than in control algae. These results suggest that the adjustment of abiotic parameters is a suitable and one of the cheapest alternatives to obtain sufficient quantities of microalgal biomass, with high oil content and minimal changes in the fatty acid profile of the strains under consideration.  相似文献   

19.
Hu H  Gao K 《Biotechnology letters》2003,25(5):421-425
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 l CO2 l–1 and aeration gave the highest biomass yield (634 mg dry wt l–1), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g–1 dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:53) (16 mg g–1 dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.  相似文献   

20.
The composition of fatty acids (FAs) of symbiotic dinoflagellates isolated from the hermatypic coral Echinoporal lamellosa adapted to the irradiance of 95, 30, 8, and 2% PAR was studied. Polar lipids and triacylglycerols (TAG) differed between them in FA composition. Polar lipids were enriched in unsaturated FAs, whereas TAG, in saturated FAs. Light exerted a substantial influence on the FA composition in both polar lipids and TAG. The elevation of irradiance resulted in the accumulation of 16:0 acid in both lipid groups and 16:1(n-7) acid in TAG. It seems likely that de novo synthesis of 16:0 acid occurred actively in the cells of symbiotic dinoflagellates in high light. Since these processes are energy-consuming ones, they utilize excessive energy. When light intensity declined, 18:4(n-3) and 20:5(n-3) acids accumulated in polar lipids, which was accompanied by the increase in the content of chlorophyll a in the cells of zooxanthellae, whereas the levels of 22:6(n-3) and 20:4(n-6) acids reduced. Although the relative content of particular FAs varied substantially in dependence of irradiance, the balance between the sum of saturated and unsaturated FAs changed insignificantly. We concluded that the role of photoadaptation could not be limited only to changes in the degree of lipid unsaturation and membrane fluidity. It is supposed that light-induced changes in the FA composition reflect the interrelation between photosynthesis and FA biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号