首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD) patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD.

Method

High resolution T1-weighted magnetic resonance imaging (MRI) were obtained from coal mine flood disaster survivors with (n = 10) and without (n = 10) recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM) method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression.

Results

Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC), and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC.

Conclusion

The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.  相似文献   

2.

Objective

To prospectively assess the relation between carotid plaque characteristics and the development of new cerebral white matter lesions (WMLs) at MRI.

Methods

Fifty TIA/stroke patients with ipsilateral 30–69% carotid stenosis underwent MRI of the plaque at baseline. Total plaque volume and markers of vulnerability to thromboembolism (lipid-rich necrotic core [LRNC] volume, fibrous cap [FC] status, and presence of intraplaque hemorrhage [IPH]) were assessed. All patients also underwent brain MRI at baseline and after one year. Ipsilateral cerebral WMLs were quantified with a semiautomatic method.

Results

Mean WML volume significantly increased over a one-year period (6.52 vs. 6.97 mm3, P = 0.005). WML volume at baseline and WML progression did not significantly differ (P>0.05) between patients with 30–49% and patients with 50–69% stenosis. There was a significant correlation between total plaque volume and baseline ipsilateral WML volume (Spearman ρ = 0.393, P = 0.005). There was no significant correlation between total plaque volume and ipsilateral WML progression. There were no significant associations between LRNC volume and WML volume at baseline and WML progression. WML volume at baseline and WML progression did not significantly differ between patients with a thick and intact FC and patients with a thin and/or ruptured FC. WML volume at baseline and WML progression also did not significantly differ between patients with and without IPH.

Conclusion

The results of this study indicate that carotid plaque burden is significantly associated with WML severity, but that there is no causal relationship between carotid plaque vulnerability and the occurrence of WMLs.  相似文献   

3.

Background

Alzheimer''s disease (AD) and its transitional state mild cognitive impairment (MCI) are characterized by amyloid plaque and tau neurofibrillary tangle (NFT) deposition within the cerebral neocortex and neuronal loss within the hippocampal formation. However, the precise relationship between pathologic changes in neocortical regions and hippocampal atrophy is largely unknown.

Methodology/Principal Findings

In this study, combining structural MRI scans and automated image analysis tools with reduced cerebrospinal fluid (CSF) Aß levels, a surrogate for intra-cranial amyloid plaques and elevated CSF phosphorylated tau (p-tau) levels, a surrogate for neocortical NFTs, we examined the relationship between the presence of Alzheimer''s pathology, gray matter thickness of select neocortical regions, and hippocampal volume in cognitively normal older participants and individuals with MCI and AD (n = 724). Amongst all 3 groups, only select heteromodal cortical regions significantly correlated with hippocampal volume. Amongst MCI and AD individuals, gray matter thickness of the entorhinal cortex and inferior temporal gyrus significantly predicted longitudinal hippocampal volume loss in both amyloid positive and p-tau positive individuals. Amongst cognitively normal older adults, thinning only within the medial portion of the orbital frontal cortex significantly differentiated amyloid positive from amyloid negative individuals whereas thinning only within the entorhinal cortex significantly discriminated p-tau positive from p-tau negative individuals.

Conclusions/Significance

Cortical Aβ and tau pathology affects gray matter thinning within select neocortical regions and potentially contributes to downstream hippocampal degeneration. Neocortical Alzheimer''s pathology is evident even amongst older asymptomatic individuals suggesting the existence of a preclinical phase of dementia.  相似文献   

4.

Background

Mild cognitive impairment (MCI) may represent an early stage of dementia conferring a particularly high annual risk of 15–20% of conversion to Alzheimer’s disease (AD). Recent findings suggest that not only gray matter (GM) loss but also a decline in white matter (WM) integrity may be associated with imminent conversion from MCI to AD.

Objective

In this study we used Voxel-based morphometry (VBM) to examine if gray matter loss and/or an increase of the apparent diffusion coefficient (ADC) reflecting mean diffusivity (MD) are an early marker of conversion from MCI to AD in a high risk population.

Method

Retrospective neuropsychological and clinical data were collected for fifty-five subjects (MCI converters n = 13, MCI non-converters n = 14, healthy controls n = 28) at baseline and one follow-up visit. All participants underwent diffusion weighted imaging (DWI) and T1-weighted structural magnetic resonance imaging scans at baseline to analyse changes in GM density and WM integrity using VBM.

Results

At baseline MCI converters showed impaired performance in verbal memory and naming compared to MCI non-converters. Further, MCI converters showed decreased WM integrity in the frontal, parietal, occipital, as well as the temporal lobe prior to conversion to AD. Multiple regression analysis showed a positive correlation of gray matter atrophy with specific neuropsychological test results.

Conclusion

Our results suggest that additionally to morphological changes of GM a reduced integrity of WM indicates an imminent progression from MCI stage to AD. Therefore, we suggest that DWI is useful in the early diagnosis of AD.  相似文献   

5.

Objective

To investigate whether there is a specific dose-dependent effect of the Apolipoprotein E (APOE) ε4 and ε2 alleles on hippocampal volume, across the cognitive spectrum, from normal aging to Alzheimer’s Disease (AD).

Materials and Methods

We analyzed MR and genetic data on 662 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database–198 cognitively normal controls (CN), 321 mild-cognitive impairment (MCI) subjects, and 143 AD subjects–looking for dose-dependent effects of the ε4 and ε2 alleles on hippocampal volumes. Volumes were measured using a fully-automated algorithm applied to high resolution T1-weighted MR images. Statistical analysis consisted of a multivariate regression with repeated-measures model.

Results

There was a dose-dependent effect of the ε4 allele on hippocampal volume in AD (p = 0.04) and MCI (p = 0.02)–in both cases, each allele accounted for loss of >150 mm3 (approximately 4%) of hippocampal volume below the mean volume for AD and MCI subjects with no such alleles (Cohen’s d = −0.16 and −0.19 for AD and MCI, respectively). There was also a dose-dependent, main effect of the ε2 allele (p<0.0001), suggestive of a moderate protective effect on hippocampal volume–an approximately 20% per allele volume increase as compared to CN with no ε2 alleles (Cohen’s d = 0.23).

Conclusion

Though no effect of ε4 was seen in CN subjects, our findings confirm and extend prior data on the opposing effects of the APOE ε4 and ε2 alleles on hippocampal morphology across the spectrum of cognitive aging.  相似文献   

6.

Background

Amyloid deposition and white matter lesions (WMLs) in Alzheimer''s disease (AD) are both considered clinically significant while a larger brain volume is thought to provide greater brain reserve (BR) against these pathological effects. This study identified the topography showing BR in patients with mild AD and explored the clinical balances among BR, amyloid, and WMLs burden.

Methods

Thirty patients with AD were enrolled, and AV-45 positron emission tomography was conducted to measure the regional standardized uptake value ratio (SUVr) in 8 cortical volumes-of- interests (VOIs). The quantitative WMLs burden was measured from magnetic resonance imaging while the normalized VOIs volumes represented BR in this study. The cognitive test represented major clinical correlates.

Results

Significant correlations between the prefrontal volume and global (r = 0.470, p = 0.024), but not regional (r = 0.264, p = 0.223) AV-45 SUVr were found. AD patients having larger regional volume in the superior- (r = 0.572, p = 0.004), superior medial- (r = 0.443, p = 0.034), and middle-prefrontal (r = 0.448, p = 0.032) regions had higher global AV-45 SUVr. For global WML loads, the prefrontal (r = -0.458, p = 0.019) and hippocampal volume (r = -0.469, p = 0.016) showed significant correlations while the prefrontal (r = -0.417, p = 0.043) or hippocampal volume (r = -0.422, p = 0.04) also predicted better composite memory scores. There were no interactions between amyloid SUVr and WML loads on the prefrontal volume.

Conclusions

BR of the prefrontal region might modulate the adverse global pathological burden caused by amyloid deposition. While prefrontal volume positively associated with hippocampal volume, WMLs had an adverse impact on the hippocampal volume that predicts memory performance in mild stage AD.  相似文献   

7.
The current study sought to examine the relative influence of genetic and environmental factors on corpus callosum (CC) microstructure in a community sample of older adult twins. Analyses were undertaken in 284 healthy older twins (66% female; 79 MZ and 63 DZ pairs) from the Older Australian Twins Study. The average age of the sample was 69.82 (SD = 4.76) years. Brain imaging scans were collected and DTI measures were estimated for the whole CC as well as its five subregions. Parcellation of the CC was performed using Analyze. In addition, white matter lesion (WMLs) burden was estimated. Heritability and genetic correlation analyses were undertaken using the SOLAR software package. Age, sex, scanner, handedness and blood pressure were considered as covariates. Heritability (h2) analysis for the DTI metrics of whole CC, indicated significant h2 for fractional anisotropy (FA) (h2 = 0.56; p = 2.89×10−10), mean diffusivity (MD) (h2 = 0.52; p = 0.30×10−6), radial diffusivity (RD) (h2 = 0.49; p = 0.2×10−6) and axial diffusivity (AD) (h2 = 0.37; p = 8.15×10−5). We also performed bivariate genetic correlation analyses between (i) whole CC DTI measures and (ii) whole CC DTI measures with total brain WML burden. Across the DTI measures for the whole CC, MD and RD shared 84% of the common genetic variance, followed by MD- AD (77%), FA - RD (52%), RD - AD (37%) and FA – MD (11%). For total WMLs, significant genetic correlations indicated that there was 19% shared common genetic variance with whole CC MD, followed by CC RD (17%), CC AD (16%) and CC FA (5%). Our findings suggest that the CC microstructure is under moderate genetic control. There was also evidence of shared genetic factors between the CC DTI measures. In contrast, there was less shared genetic variance between WMLs and the CC DTI metrics, suggesting fewer common genetic variants.  相似文献   

8.

Background

MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods.

Objective

To compare FTD with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy.

Methods

Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups.

Results

We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55).

Conclusion

Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD.  相似文献   

9.
A novel method is described for mapping dynamic cerebral blood flow autoregulation to assess autoregulatory efficiency throughout the brain, using magnetic resonance imaging (MRI). Global abnormalities in autoregulation occur in clinical conditions, including stroke and head injury, and are of prognostic significance. However, there is limited information about regional variations. A gradient-echo echo-planar pulse sequence was used to scan the brains of healthy subjects at a rate of 1 scan/second during a transient decrease in arterial blood pressure provoked by a sudden release of pressure in bilateral inflated thigh cuffs. The signal decrease and subsequent recovery were analyzed to provide an index of autoregulatory efficiency (MRARI). MRI time-series were successfully acquired and analyzed in eleven subjects. Autoregulatory efficiency was not uniform throughout the brain: white matter exhibited faster recovery than gray (MRARI = 0.702 vs. 0.672, p = 0.009) and the cerebral cortex exhibited faster recovery than the cerebellum (MRARI = 0.669 vs. 0.645, p = 0.016). However, there was no evidence for differences between different cortical regions. Differences in autoregulatory efficiency between white matter, gray matter and the cerebellum may be a result of differences in vessel density and vasodilation. The techniques described may have practical importance in detecting regional changes in autoregulation consequent to disease.  相似文献   

10.

Introduction

Mild cognitive impairment (MCI) is associated with an increased risk of developing dementia. However, many individuals diagnosed with MCI are found to have reverted to normal cognition on follow-up. This study investigated factors predicting or associated with reversion from MCI to normal cognition.

Methods

Our analyses considered 223 participants (48.9% male) aged 71–89 years, drawn from the prospective, population-based Sydney Memory and Ageing Study. All were diagnosed with MCI at baseline and subsequently classified with either normal cognition or repeat diagnosis of MCI after two years (a further 11 participants who progressed from MCI to dementia were excluded). Associations with reversion were investigated for (1) baseline factors that included diagnostic features, personality, neuroimaging, sociodemographics, lifestyle, and physical and mental health; (2) longitudinal change in potentially modifiable factors.

Results

There were 66 reverters to normal cognition and 157 non-reverters (stable MCI). Regression analyses identified diagnostic features as most predictive of prognosis, with reversion less likely in participants with multiple-domain MCI (p = 0.011), a moderately or severely impaired cognitive domain (p = 0.002 and p = 0.006), or an informant-based memory complaint (p = 0.031). Reversion was also less likely for participants with arthritis (p = 0.037), but more likely for participants with higher complex mental activity (p = 0.003), greater openness to experience (p = 0.041), better vision (p = 0.014), better smelling ability (p = 0.040), or larger combined volume of the left hippocampus and left amygdala (p<0.040). Reversion was also associated with a larger drop in diastolic blood pressure between baseline and follow-up (p = 0.026).

Discussion

Numerous factors are associated with reversion from MCI to normal cognition. Assessing these factors could facilitate more accurate prognosis of individuals with MCI. Participation in cognitively enriching activities and efforts to lower blood pressure might promote reversion.  相似文献   

11.
The current study evaluated amyloid-β oligomers (Aβo) in cerebrospinal fluid as a clinical biomarker for Alzheimer’s disease (AD). We developed a highly sensitive Aβo ELISA using the same N-terminal monoclonal antibody (82E1) for capture and detection. CSF samples from patients with AD, mild cognitive impairment (MCI), and healthy controls were examined. The assay was specific for oligomerized Aβ with a lower limit of quantification of 200 fg/ml, and the assay signal showed a tight correlation with synthetic Aβo levels. Three clinical materials of well characterized AD patients (n = 199) and cognitively healthy controls (n = 148) from different clinical centers were included, together with a clinical material of patients with MCI (n = 165). Aβo levels were elevated in the all three AD-control comparisons although with a large overlap and a separation from controls that was far from complete. Patients with MCI who later converted to AD had increased Aβo levels on a group level but several samples had undetectable levels. These results indicate that presence of high or measurable Aβo levels in CSF is clearly associated with AD, but the overlap is too large for the test to have any diagnostic potential on its own.  相似文献   

12.

Background and Aims

Brain dysfunction in functional dyspepsia (FD) has been identified by multiple neuroimaging studies. This study aims to investigate the regional gray matter density (GMD) changes in meal-related FD patients and their correlations with clinical variables, and to explore the possible influence of the emotional state on FD patients’s brain structures.

Methods

Fifty meal-related FD patients and forty healthy subjects (HS) were included and underwent a structural magnetic resonance imaging scan. Voxel-based morphometry analysis was employed to identify the cerebral structure alterations in meal-related FD patients. Regional GMD changes'' correlations with the symptoms and their durations, respectively, have been analyzed.

Results

Compared to the HS, the meal-related FD patients showed a decreased GMD in the bilateral precentral gyrus, medial prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and midcingulate cortex (MCC), left orbitofrontal cortex (OFC) and right insula (p<0.05, FWE Corrected, Cluster size>50). After controlling for anxiety and depression, the meal-related FD patients showed a decreased GMD in the bilateral middle frontal gyrus, left MCC, right precentral gyrus and insula (p<0.05, FWE Corrected, Cluster size>50). Before controlling psychological factors, the GMD decreases in the ACC were negatively associated with the symptom scores of the Nepean Dyspepsia Index (NDI) (r = −0.354, p = 0.048, Bonferroni correction) and the duration of FD (r = −0.398, p = 0.02, Bonferroni correction) respectively.

Conclusions

The regional GMD of meal-related FD patients, especially in the regions of the homeostatic afferent processing network significantly differed from that of the HS, and the psychological factors might be one of the essential factors significantly affecting the regional brain structure of meal-related FD patients.  相似文献   

13.
ABSTRACT: BACKGROUND: To test the hypothesis that white matter lesions (WML) are primarily associated with regional frontal cortical volumes, and to determine the mediating effects of these regional frontal cortices on the associations of WML with depressive symptoms and cognitive dysfunction. METHODS: Structural brains MRIs were performed on 161 participants: cognitively normal, cognitive impaired but not demented, and demented participants. Lobar WML volumes, regional frontal cortical volumes, depressive symptom severity, and cognitive abilities were measured. Multiple linear regression analyses were used to identify WML volume effects on frontal cortical volume. Structural equation modeling was used to determine the MRI-depression and the MRI-cognition path relationships. RESULTS: WML predicted frontal cortical volume, particularly in medial orbirtofrontal cortex, irrespective of age, gender, education, and group status. WML directly predicted depressive score, and this relationship was not mediated by regional frontal cortices. In contrast, the association between WML and cognitive function was indirect and mediated by regional frontal cortices. CONCLUSIONS: These findings suggest that the neurobiological mechanisms underpinning depressive symptoms and cognitive dysfunction in older adults may differ.  相似文献   

14.

Background

The hypothetical model of dynamic biomarkers for Alzheimer’s disease (AD) describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI) stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI) and late MCI (LMCI) as defined by the Alzheimer’s disease Neuroimaging Initiative (ADNI)-Go in order to compare the biomarker profile between EMCI and LMCI.

Objectives

To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN), as well as those with EMCI, LMCI and mild AD.

Methods

In the present study, 354 participants, including CN (n = 109), EMCI (n = 157), LMCI (n = 39) and AD (n = 49), were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [18F]AV45 and [18F]fluorodeoxyglucose ([18F]FDG) PET, respectively. Uptake ratio images of [18F]AV45 and [18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [18F]AV45 and [18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM).

Results

EMCI patients showed higher global [18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in precuneus, hippocampus, entorhinal and inferior parietal cortices, as compared to LMCI.

Conclusions

The present results indicate that brain metabolism remains normal despite the presence of significant amyloid accumulation in EMCI. These results suggest a role for anti-amyloid interventions in EMCI aiming to delay or halt the deposition of amyloid and related metabolism impairment.  相似文献   

15.
BackgroundBehavioural disorders and psychological symptoms of Dementia (BPSD) are commonly observed in Alzheimer’s disease (AD), and strongly contribute to increasing patients'' disability. Using voxel-lesion-symptom mapping (VLSM), we investigated the impact of white matter lesions (WMLs) on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI).MethodsThirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up) and 26 healthy controls underwent magnetic resonance imaging (MRI) examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients’ behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD.ResultsApathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs) and the severity of apathy. Regional grey matter atrophy did not account for any BPSD.ConclusionsThis study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.  相似文献   

16.
Recently, a large meta-analysis of five genome wide association studies (GWAS) identified a novel locus (rs2718058) adjacent to NME8 that played a preventive role in Alzheimer''s disease (AD). However, this link between the single nucleotide polymorphism (SNP) rs2718058 and the pathology of AD have not been mentioned yet. Therefore, this study assessed the strength of association between the NME8 rs2718058 genotypes and AD-related measures including the cerebrospinal fluid (CSF) amyloid beta, tau, P-tau concentrations, neuroimaging biomarkers and cognitive performance, in a large cohort from Alzheimer''s Disease Neuroimaging Initiative (ADNI) database. We used information of a total of 719 individuals, including 211 normal cognition (NC), 346 mild cognitive impairment (MCI) and 162 AD. Although we didn''t observe a positive relationship between rs2718058 and AD, it was significantly associated with several AD related endophenotypes. Among the normal cognitively normal participants, the minor allele G carriers showed significantly associated with higher CDRSB score than A allele carriers (P = 0.021). Occipital gyrus atrophy were significantly associated with NME8 genotype status (P = 0.002), with A allele carriers has more atrophy than the minor allele G carriers in AD patients; lateral ventricle (both right and left) cerebral metabolic rate for glucose (CMRgl) were significantly associated with NME8 genotype (P<0.05), with GA genotype had higher metabolism than GG and AA genotypes in MCI group; the atrophic right hippocampus in 18 months is significantly different between the three group, with GG and AA genotypes had more hippocampus atrophy than GA genotypes in the whole group. Together, our results are consistent with the direction of previous research, suggesting that NME8 rs2718058 appears to play a role in lowering the brain neurodegeneration.  相似文献   

17.

Background

Concerns about worsening memory (“memory concerns”; MC) and impairment in memory performance are both predictors of Alzheimer''s dementia (AD). The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI).

Methods

We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n = 305) vs. absence (n = 112) of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models.

Results

Risk of incident AD was increased by MC (HR = 2.55, 95%CI: 1.33–4.89), lower memory performance (HR = 0.63, 95%CI: 0.56–0.71) and ApoE4-genotype (HR = 1.89, 95%CI: 1.18–3.02). An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment.

Conclusions

Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients'' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI.  相似文献   

18.
ObjectiveStructural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Hypotheses: Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum).MethodsWe conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold.ResultsFemale adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls.ConclusionsFemale adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation of outcomes, decision-making, reward, risk-taking, and rule-breaking antisocial behavior.  相似文献   

19.

Objective

Cross-sectional genetic association studies have reported equivocal results on the relationship between the brain-derived neurotrophic factor (BDNF) Val66Met and risk of Alzheimer’s disease (AD). As AD is a neurodegenerative disease, genetic influences may become clearer from prospective study. We aimed to determine whether BDNF Val66Met polymorphism influences changes in memory performance, hippocampal volume, and Aβ accumulation in adults with amnestic mild cognitive impairment (aMCI) and high Aβ.

Methods

Thirty-four adults with aMCI were recruited from the Australian, Imaging, Biomarkers and Lifestyle (AIBL) Study. Participants underwent PiB-PET and structural MRI neuroimaging, neuropsychological assessments and BDNF genotyping at baseline, 18 month, and 36 month assessments.

Results

In individuals with aMCI and high Aβ, Met carriers showed significant and large decline in episodic memory (d = 0.90, p = .020) and hippocampal volume (d = 0.98, p = .035). BDNF Val66Met was unrelated to the rate of Aβ accumulation (d = −0.35, p = .401).

Conclusions

Although preliminary due to the small sample size, results of this study suggest that high Aβ levels and Met carriage may be useful prognostic markers of accelerated decline in episodic memory, and reductions in hippocampal volume in individuals in the prodromal or MCI stage of AD.  相似文献   

20.
Previous studies have shown that high total homocysteine levels are associated with Alzheimer''s disease (AD) and mild cognitive impairment (MCI). In this study, we test the relationship between cognitive function and total homocysteine levels in healthy subjects (Global Dementia Rating, CDR = 0) and individuals with MCI (CDR = 0.5). We have used a cognitive task that tests learning and generalization of rules, processes that have been previously shown to rely on the integrity of the striatal and hippocampal regions, respectively. We found that total homocysteine levels are higher in MCI individuals than in healthy controls. Unlike what we expected, we found no difference between MCI subjects and healthy controls in learning and generalization. We conducted further analysis after diving MCI subjects in two groups, depending on their Global Deterioration Scale (GDS) scores: individuals with very mild cognitive decline (vMCD, GDS = 2) and mild cognitive decline (MCD, GDS = 3). There was no difference among the two MCI and healthy control groups in learning performance. However, we found that individuals with MCD make more generalization errors than healthy controls and individuals with vMCD. We found no difference in the number of generalization errors between healthy controls and MCI individuals with vMCD. In addition, interestingly, we found that total homocysteine levels correlate positively with generalization errors, but not with learning errors. Our results are in agreement with prior results showing a link between hippocampal function, generalization performance, and total homocysteine levels. Importantly, our study is perhaps among the first to test the relationship between learning (and generalization) of rules and homocysteine levels in healthy controls and individuals with MCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号