共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand and better control AI outbreaks, not only is it necessary to understand the biology of influenza viruses but also the natural history of the hosts in which these viruses multiply and the different environments in which the hosts and viruses interact. This includes the anthropogenic factors that have influenced where, whether and how avian influenza (AI) viruses can replicate and transmit between wild birds and poultry, and between poultry and mammals, including factors influencing uptake and application of appropriate control and preventive measures for AI. This disease represents one of the best examples of the need for a ‘One Health’ approach to understand and tackle disease with an increasing need to comprehend and unravel the environmental and ecology drivers that affect the virus host interactions. This forum piece seeks to bring together these aspects through a review of recent outbreaks and how a deeper understanding of all three aspects, the virus, the host and the environment, can help us better manage future outbreaks. 相似文献
2.
An outbreak of contagious respiratory disease in mink occurred in October 1984 on the south-east coast of Sweden. High morbidity with coughing, sneezing and dullness was reported. Post mortem examination showed interstitial pneumonia in most examined mink. An avian influenza A virus was isolated and shown to belong to serotype H10N4. Serological studies established that this virus was the most probable cause of the outbreak and also that this new viral infection seemed to be limited to the south-east coast of Sweden. 相似文献
3.
Darrell R. Kapczynski Mary Pantin-Jackwood Sofia G. Guzman Yadira Ricardez Erica Spackman Kateri Bertran David L. Suarez David E. Swayne 《Journal of virology》2013,87(16):9086-9096
In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry. 相似文献
4.
2005年在广东进行流行病学调查时分离到一株鹦鹉源禽流感病毒,经鉴定为H5N2亚型禽流感病毒(A/Parrot/Guangdong/268/2005)。该毒株的HA裂解位点附近的氨基酸序列为RETRGLF,只含有一个碱性氨基酸,符合低致病性禽流感病毒的HA裂解位点附近氨基酸序列的分子特征;与H5N2亚型禽流感代表毒株相比,该毒株HA和NA基因的糖基化位点、HA基因的受体结合位点编码区、NA基因的耐药性位点均未发生变异。将该毒株全基因组序列与GenBank已公布的19株H5N2亚型禽流感病毒株的相应序列进行比较分析并绘制系统进化树后发现:其与低致病性禽流感毒株A/Pheasant/NJ/1355/1998(H5N2)-like的亲缘关系最近,位于以A/Chicken/Pennsylvania/1/1983(H5N2)为代表的美洲进化分支。 相似文献
5.
Sandeepa M. Eswarappa 《PloS one》2009,4(4)
Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies. 相似文献
6.
Lapo Mughini-Gras Lebana Bonfanti Paolo Mulatti Isabella Monne Vittorio Guberti Paolo Cordioli Stefano Marangon 《PloS one》2014,9(1)
Italy has experienced recurrent incursions of H5N2 avian influenza (AI) viruses in different geographical areas and varying sectors of the domestic poultry industry. Considering outbreak heterogeneity rather than treating all outbreaks of low pathogenicity AI (LPAI) viruses equally is important given their interactions with the environment and potential to spread, evolve and increase pathogenicity. This study aims at identifying potential environmental drivers of H5N2 LPAI outbreak occurrence in time, space and poultry populations. Thirty-four environmental variables were tested for association with the characteristics of 27 H5N2 LPAI outbreaks (i.e. time, place, flock type, number and species of birds affected) occurred among domestic poultry flocks in Italy in 2010–2012. This was done by applying a recently proposed analytical approach based on a combined non-metric multidimensional scaling, clustering and regression analysis. Results indicated that the pattern of (dis)similarities among the outbreaks entailed an underlying structure that may be the outcome of large-scale, environmental interactions in ecological dimension. Increased densities of poultry breeders, and increased land coverage by industrial, commercial and transport units were associated with increased heterogeneity in outbreak characteristics. In areas with high breeder densities and with many infrastructures, outbreaks affected mainly industrial turkey/layer flocks. Outbreaks affecting ornamental, commercial and rural multi-species flocks occurred mainly in lowly infrastructured areas of northern Italy. Outbreaks affecting rural layer flocks occurred mainly in areas with low breeder densities in south-central Italy. In savannah-like environments, outbreaks affected mainly commercial flocks of galliformes. Suggestive evidence that ecological ordination makes sense genetically was also provided, as virus strains showing high genetic similarity clustered into ecologically similar outbreaks. Findings were informed by hypotheses about how ecological interactions among poultry populations, viruses and their environments can be related to the observed patterns of H5N2 LPAI occurrence. This may prove useful in enhancing future interventions by developing site-specific, ecologically-grounded strategies. 相似文献
7.
Zhixun Xie Liji Xie Chenyu Zhou Jiabo Liu Yaoshan Pang Xianwen Deng Zhiqin Xie Qing Fan 《Journal of virology》2012,86(24):13868-13869
We report here the complete genomic sequence of a novel H6N1 avian influenza virus strain, A/Duck/Guangxi/GXd-5/2010(H6N1), isolated from pockmark ducks in Guangxi Province, Southern China. All of the 8 gene segments of A/Duck/Guangxi/GXd-5/2010(H6N1) are attributed to the Eurasian lineage; the amino acid motif of the cleavage site between HA1 and HA2 was P-Q-I-E-T-R-G. These are typical characteristics of the low-pathogenicity avian influenza virus. This study will help to understand the epidemiology and molecular characteristics of avian influenza virus in ducks. 相似文献
8.
Kaushik Chattopadhyay Guillaume Fournié Md. Abul Kalam Paritosh K. Biswas Ahasanul Hoque Nitish C. Debnath Mahmudur Rahman Dirk U. Pfeiffer David Harper David L. Heymann 《EcoHealth》2018,15(1):63-71
Avian influenza is a major animal and public health concern in Bangladesh. A decade after development and implementation of the first national avian influenza and human pandemic influenza preparedness and response plan in Bangladesh, a two-stage qualitative stakeholder analysis was performed in relation to the policy development process and the actual policy. This study specifically aimed to identify the future policy options to prevent and control avian influenza and other poultry-related zoonotic diseases in Bangladesh. It was recommended that the policy should be based on the One Health concept, be evidence-based, sustainable, reviewed and updated as necessary. The future policy environment that is suitable for developing and implementing these policies should take into account the following points: the need to formally engage multiple sectors, the need for clear and acceptable leadership, roles and responsibilities and the need for a common pool of resources and provision for transferring resources. Most of these recommendations are directed towards the Government of Bangladesh. However, other sectors, including research and poultry production stakeholders, also have a major role to play to inform policy making and actively participate in the multi-sectoral approach. 相似文献
9.
Scott Naysmith 《EcoHealth》2014,11(1):50-52
Live bird markets are considered high-risk environments facilitating viral transfer and replication of influenza A H5N1. In Indonesia, these markets have been the source for multiple human infections of H5N1 resulting in death, and thus have been the focus of government-led interventions. This paper examines the aftermath of an intervention in one market in Bali, Indonesia. It highlights the social and economic factors influencing the adoption of risk prevention behaviour and concludes by arguing for further qualitative research to understand why at-risk individuals fail to adopt biosecurity measures, even after recently experiencing an outbreak of avian influenza. 相似文献
10.
Maria Fink Sandra Revilla Fernández Hermann Schobesberger Josef Koefer 《Journal of virology》2010,84(11):5815-5823
In spring 2006, highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 was detected in Austria in 119 dead wild birds. The hemagglutinin cleavage site showed that the amino acid sequence motif was identical to that of the Qinghai lineage. For detailed analysis, the hemagglutinin (HA) and neuraminidase (NA) genes of 27 selected Austrian H5N1 viruses originating from different regions and wild bird species were analyzed phylogenetically, which revealed two clearly separated Austrian subclusters, both belonging to European cluster EMA-1. Subcluster South (SCS) contains virus isolates from the south of Austria as well as from Slovenia, Turkey, Egypt, and Nigeria. The second subcluster, Northwest (SCN), covered a larger group of viruses originating from different locations and wild bird species in the northern and very western parts of Austria, as well as from Bavaria and Switzerland. Surprisingly, virus isolates originating from two mute swans and one wild duck found on the north side of the Alps did not cluster with SCN but with SCS. Together with isolates from Bavarian, the Czech Republic, Italy, and Slovakia, they form a genuine subgroup, named subgroup Bavaria (SGB). This subgroup forms a link to SCN, indicating a spread of the virus from south to north. There has been a general assumption that the generic HPAI introduction route into Europe was from Russia to north Germany, introducing cluster EMA-2 into Europe. Interestingly, our findings support the assumption of an alternative introduction of the HPAI H5N1 virus from Turkey to central Europe, where it spread as cluster EMA-1 during the outbreak of 2006.Highly pathogenic H5N1 viruses have been recognized in Asia since 1996, when the first Asian H5N1 virus (A/Goose/Guandgdong/1/96) was isolated from sick geese in southern China (25). Since then, this virus has caused endemic infections in poultry in many southeast Asian countries (13, 18). Although influenza viruses in wild aquatic birds occasionally are transmitted to chickens and turkeys, where they may produce outbreaks of severe disease, they do not appear to have entered the wild bird populations to a substantial extent until late April to June 2005, when a large outbreak of H5N1 infection occurred at Qinghai Lake in western China, a major breeding site of migratory birds (2). Subsequently to the outbreak at Qinghai Lake from April to June 2005, H5N1 viruses have continued to cause outbreaks in Asia and Europe (http://www.who.int).A major molecular determinant for the pathogenicity of H5 and H7 viruses is the amino acid sequence specifying the proteolytic cleavage site of hemagglutinin (HA). In lowly pathogenic avian influenza virus (LPAIV), single basic residues at the cleavage site restrict the proteolytic activation of HA to the respiratory and intestinal tracts. In contrast, insertional mutations at the genomic locus encoding the endoproteolytic cleavage site resulting in the presence of a polybasic site render it accessible for ubiquitous protease, resulting in severe, systemic infections (17). All analyzed viruses originating from Qinghai Lake showed the series of basic amino acids at the HA cleavage site PQGERRRKKRGLF, which is characteristic of high pathogenicity in chickens. They also exhibited a 20-amino-acid deletion of the neuraminidase (NA) stalk (residues 49 to 68) that is characteristic of the NA of the A/Goose/Guandgdong/1/96 virus (2).Salzberg et al. analyzed 36 isolates of highly pathogenic avian influenza (HPAI) H5N1 viruses collected from Europe, northern Africa, the Middle East, and Asia and described the genetic relationships among these isolates, which affect birds and humans (16). He grouped the isolates into three distinct lineages, one encompassing all known non-Asian isolates, and hypothesized that this Europe-African lineage has been introduced into the European-African region at least three times and has split into three distinct, independently evolving sublineages: EMA-1, EMA-2, and EMA-3. These three clades possibly represent either separate introductions or a single introduction from Asia via Russia into Europe or any other western site, which then has subsequently evolved into three sublineages, EMA-1, EMA-2, and EMA-3 (16). EMA-2 contains the first German H5N1-positive swan found at the beginning of February 2006 on the Baltic island Ruegen (A/Cygnus cygnus/Germany/R65/06). This suggests a single introduction route for this cluster, because a phylogenetic analysis of the HA and the NA nucleotide sequences revealed that the closest genetic relative was an isolate from Astrakhan (A/Cygnus olor/Astrakhan/Ast05-2-3/2005). From Astrakhan, located in southern Russia, a westward movement of wild birds to central Europe in late January/early February 2006 is suggested (24).The aim of this study was to perform a phylogenetic analysis of Austrian HPAI H5N1 isolates from the outbreak of 2006 to determine their linkage to the European clusters EMA-1, EMA-2, and EMA-3 and to identify possible implications for H5N1 introduction routes into Austria. 相似文献
11.
From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10−5 [3.08*10−5, 3.23*10−5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data. 相似文献
12.
The recurrence of influenza A epidemics has originally been explained by a “continuous antigenic drift” scenario. Recently, it has been shown that if genetic drift is gradual, the evolution of influenza A main antigen, the haemagglutinin, is punctuated. As a consequence, it has been suggested that influenza A dynamics at the population level should be approximated by a serial model. Here, simple models are used to test whether a serial model requires gradual antigenic drift within groups of strains with the same antigenic properties (antigenic clusters). We compare the effect of status based and history based frameworks and the influence of reduced susceptibility and infectivity assumptions on the transient dynamics of antigenic clusters. Our results reveal that the replacement of a resident antigenic cluster by a mutant cluster, as observed in data, is reproduced only by the status based model integrating the reduced infectivity assumption. This combination of assumptions is useful to overcome the otherwise extremely high model dimensionality of models incorporating many strains, but relies on a biological hypothesis not obviously satisfied. Our findings finally suggest the dynamical importance of gradual antigenic drift even in the presence of punctuated immune escape. A more regular renewal of susceptible pool than the one implemented in a serial model should be part of a minimal theory for influenza at the population level. 相似文献
13.
Evidence from previous psycholinguistic research suggests that phonological units such as phonemes have a privileged role during phonological planning in Dutch and English (aka the segment-retrieval hypothesis). However, the syllable-retrieval hypothesis previously proposed for Mandarin assumes that only the entire syllable unit (without the tone) can be prepared in advance in speech planning. Using Cantonese Chinese as a test case, the present study was conducted to investigate whether the syllable-retrieval hypothesis can be applied to other Chinese spoken languages. In four implicit priming (form-preparation) experiments, participants were asked to learn various sets of prompt-response di-syllabic word pairs and to utter the corresponding response word upon seeing each prompt. The response words in a block were either phonologically related (homogeneous) or unrelated (heterogeneous). Participants'' naming responses were significantly faster in the homogeneous than in the heterogeneous conditions when the response words shared the same word-initial syllable (without the tone) (Exps.1 and 4) or body (Exps.3 and 4), but not when they shared merely the same word-initial phoneme (Exp.2). Furthermore, the priming effect observed in the syllable-related condition was significantly larger than that in the body-related condition (Exp. 4). Although the observed syllable priming effects and the null effect of word-initial phoneme are consistent with the syllable-retrieval hypothesis, the body-related (sub-syllabic) priming effects obtained in this Cantonese study are not. These results suggest that the syllable-retrieval hypothesis is not generalizable to all Chinese spoken languages and that both syllable and sub-syllabic constituents are legitimate planning units in Cantonese speech production. 相似文献
14.
我国部分禽流感病毒H5N1之HA序列变异演化分析 总被引:2,自引:0,他引:2
从GenBank上获得我国人(Homo sapiens)、家禽和野鸟42株H5N1亚型禽流感病毒的HA基因核酸序列,利用DNAStar分析HA蛋白关键位点氨基酸残基的变化,比较HA基因核苷酸序列同源性,构建遗传进化树.探讨我国部分人、家禽和野鸟H5N1病毒基因的遗传进化关系.序列分析结果表明:禽流感病毒H5N1亚型的HA基因持续地发生着变异,但并非以均一速度进行,时间间隔愈长,核苷酸同源性愈低;我国同一地区或临近地区,当年或前后两年发生的人及家禽感染的禽流感病毒高度同源.推测我国部分人发生的禽流感可能是通过家禽感染的;候鸟的迁徙在传播病毒过程中所起的作用有待深入探讨. 相似文献
15.
Gilbert M Newman SH Takekawa JY Loth L Biradar C Prosser DJ Balachandran S Subba Rao MV Mundkur T Yan B Xing Z Hou Y Batbayar N Natsagdorj T Hogerwerf L Slingenbergh J Xiao X 《EcoHealth》2010,7(4):448-458
Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May-June-July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl. 相似文献
16.
Julien Cappelle Delong Zhao Marius Gilbert Martha I. Nelson Scott H. Newman John Y. Takekawa Nicolas Gaidet Diann J. Prosser Ying Liu Peng Li Yuelong Shu Xiangming Xiao 《EcoHealth》2014,11(1):109-119
For decades, southern China has been considered to be an important source for emerging influenza viruses since key hosts live together in high densities in areas with intensive agriculture. However, the underlying conditions of emergence and spread of avian influenza viruses (AIV) have not been studied in detail, particularly the complex spatiotemporal interplay of viral transmission between wild and domestic ducks, two major actors of AIV epidemiology. In this synthesis, we examine the risks of avian influenza spread in Poyang Lake, an area of intensive free-ranging duck production and large numbers of wild waterfowl. Our synthesis shows that farming of free-grazing domestic ducks is intensive in this area and synchronized with wild duck migration. The presence of juvenile domestic ducks in harvested paddy fields prior to the arrival and departure of migrant ducks in the same fields may amplify the risk of AIV circulation and facilitate the transmission between wild and domestic populations. We provide evidence associating wild ducks migration with the spread of H5N1 in the spring of 2008 from southern China to South Korea, Russia, and Japan, supported by documented wild duck movements and phylogenetic analyses of highly pathogenic avian influenza H5N1 sequences. We suggest that prevention measures based on a modification of agricultural practices may be implemented in these areas to reduce the intensity of AIV transmission between wild and domestic ducks. This would require involving all local stakeholders to discuss feasible and acceptable solutions. 相似文献
17.
Industrial Food Animal Production and Global Health Risks: Exploring the Ecosystems and Economics of Avian Influenza 总被引:2,自引:0,他引:2
Jessica H. Leibler Joachim Otte David Roland-Holst Dirk U. Pfeiffer Ricardo Soares Magalhaes Jonathan Rushton Jay P. Graham Ellen K. Silbergeld 《EcoHealth》2009,6(1):58-70
Many emerging infectious diseases in human populations are associated with zoonotic origins. Attention has often focused on
wild animal reservoirs, but most zoonotic pathogens of recent concern to human health either originate in, or are transferred
to, human populations from domesticated animals raised for human consumption. Thus, the ecological context of emerging infectious
disease comprises two overlapping ecosystems: the natural habitats and populations of wild animals, and the anthropogenically
controlled habitats and populations of domesticated species. Intensive food animal production systems and their associated
value chains dominate in developed countries and are increasingly important in developing countries. These systems are characterized
by large numbers of animals being raised in confinement with high throughput and rapid turnover. Although not typically recognized
as such, industrial food animal production generates unique ecosystems—environments that may facilitate the evolution of zoonotic
pathogens and their transmission to human populations. It is often assumed that confined food animal production reduces risks
of emerging zoonotic diseases. This article provides evidence suggesting that these industrial systems may increase animal
and public health risks unless there is recognition of the specific biosecurity and biocontainment challenges of the industrial
model. Moreover, the economic drivers and constraints faced by the industry and its participants must be fully understood
in order to inform preventative policy. In order to more effectively reduce zoonotic disease risk from industrial food animal
production, private incentives for the implementation of biosecurity must align with public health interests. 相似文献
18.
一起传染病暴发中肠道病毒血清型鉴定和ECHO30基因特征分析 总被引:10,自引:1,他引:10
2003年5~9月,山东省泰安市发生了由肠道病毒(Enterovirus,EV)感染所致的传染病暴发,临床症状以手足口病(HFMD)为主,同时有心肌炎和无菌性脑膜炎等中枢神经系统症状患者也占较大比例。131份病人(粪便、咽拭子、脑脊液)标本中共分离到EV62株,其中ECHO1939株,EV716株,ECHO304株,其它肠道病毒13株。4株ECHO30病毒中的2株分离自2个患者的粪便标本,但用WHO肠道组合血清中和试验未能定出型别。另外2株分离自同一患者的粪便和脑脊液标本。病原学分析表明,ECHO30是引起该患者无菌性脑膜炎的病原。抗E—CHO30标准株的血清中和这4株病毒的滴度低于标准株5~20倍。VP1区全基因序列测定和同源性比较分析表明,4株ECHO30分离株病毒核苷酸同源性在98.0%~98.5%,氨基酸同源性在98.9%~99.3%,提示这4株病毒来源于同一传播链,2003年5~9月ECHO30在该地区可能有局部流行。系统进化树分析表明,ECHO30病毒可以划分为6个基因型,其中基因型1~5为GenBank中已发表的ECHO30分离株,山东分离株与其它5个基因型成员核苷酸差异分别在9.4%~24.4%,在进化树上形成了较独立的分支,是一个新基因型,将其划分为第6基因型。 相似文献
19.
20.
Prasad L. Polavarapu 《Chirality》2016,28(6):445-452
Chiroptical spectroscopy has evolved into a promising tool for chiral molecular structural determination in the last four decades. Determination of the absolute configurations (ACs) of bromochlorofluoromethane and [2H1,2H2,2H3]‐neopentane demonstrated the enviable advantages of chiroptical spectroscopy. Furthermore, uncovering the errors in the ACs reported in the literature established a glimpse of what can be accomplished with the modern chiroptical spectroscopic methods. Despite these triumphs, it is important to exercise caution in the practice of chiroptical spectroscopic methods, because certain widely practiced approaches can lead to erroneous conclusions. Selected major accomplishments and special precautions needed for future applications are emphasized. Chirality 28:445–452, 2016. © 2016 Wiley Periodicals, Inc. 相似文献