首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Neurotoxic paralytic shellfish poisoning (PSP) toxins, anatoxin-a (ATX), and hepatotoxic cylindrospermopsin (CYN) have been detected in several lakes in northeast Germany during the last 2 decades. They are produced worldwide by members of the nostocalean genera Anabaena, Cylindrospermopsis, and Aphanizomenon. Although no additional sources of PSP toxins and ATX have been identified in German water bodies to date, the observed CYN concentrations cannot be produced solely by Aphanizomenon flos-aquae, the only known CYN producer in Germany. Therefore, we attempted to identify PSP toxin, ATX, and CYN producers by isolating and characterizing 92 Anabaena, Aphanizomenon, and Anabaenopsis strains from five lakes in northeast Germany. In a polyphasic approach, all strains were morphologically and phylogenetically classified and then tested for PSP toxins, ATX, and CYN by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) and screened for the presence of PSP toxin- and CYN-encoding gene fragments. As demonstrated by ELISA and LC-MS, 14 Aphanizomenon gracile strains from Lakes Melang and Scharmützel produced four PSP toxin variants (gonyautoxin 5 [GTX5], decarbamoylsaxitoxin [dcSTX], saxitoxin [STX], and neosaxitoxin [NEO]). GTX5 was the most prevalent PSP toxin variant among the seven strains from Lake Scharmützel, and NEO was the most prevalent among the seven strains from Lake Melang. The sxtA gene, which is part of the saxitoxin gene cluster, was found in the 14 PSP toxin-producing A. gracile strains and in 11 non-PSP toxin-producing Aphanizomenon issatschenkoi, A. flos-aquae, Anabaena planktonica, and Anabaenopsis elenkinii strains. ATX and CYN were not detected in any of the isolated strains. This study is the first confirming the role of A. gracile as a PSP toxin producer in German water bodies.Neurotoxic saxitoxins, also known as paralytic shellfish poisoning (PSP) toxins, as well as neurotoxic anatoxin-a (ATX) and hepatotoxic cylindrospermopsin (CYN), have been detected in several northeast German lakes in the last 2 decades (3, 35). In a survey conducted in 1995 and 1996, ATX was present in 26% of 78 German lakes and PSP toxins were present in 34% of 29 lakes (3). In 2004, a qualitative survey showed that CYN was present in 50% of 127 German lakes investigated (8). Aphanizomenon flos-aquae Ralfs ex Born. et Flah. has been identified as producer of CYN in these lakes (33), but sources of PSP toxins and ATX have yet to be identified in German water bodies.PSP toxins are potent neurotoxic alkaloids produced by marine dinoflagellates and filamentous freshwater cyanobacteria (1, 2, 42). The 21 currently known PSP toxin variants belong to four groups: carbamoyl toxins, decarbamoyl toxins, N-sulfocarbamoyl toxins, and deoxydecarbamoyl toxins (15). Carbamoyl toxins are the most potent PSP toxins, including saxitoxin (STX) and neosaxitoxin (NEO), while deoxydecarbamoyl toxins comprise the least potent PSP toxins (38). PSP toxins block neural sodium ion channels, leading to death through respiratory failure (1).Cyanobacteria belonging to the orders Oscillatoriales and Nostocales, including members of the genera Cylindrospermopsis, Anabaena, and Aphanizomenon, have been identified as PSP toxin producers in freshwater habitats (4). Aphanizomenon gracile Lemmermann and Aphanizomenon flos-aquae strains from China, Portugal, and the United States have been described as PSP toxin producers (9, 23, 31). Both species are abundant members of the Nostocales and are widely distributed in phytoplankton communities in oligotrophic, mesotrophic, and eutrophic water bodies throughout northeast Germany (35).Regarding saxitoxins, Cylindrospermopsis raciborskii (Woloszyńska) Seenayya et Subba Raju strain T3 was recently found to contain a new candidate saxitoxin gene cluster containing around 35 kb of DNA and comprising more than 26 genes (16). This saxitoxin gene cluster was also found in Anabaena circinalis Rabenhorst ex Bornet & Flahault strains from Australia, in Aphanizomenon sp. strain NH5, and in Lyngbya wollei (Farlow ex Gomont) comb. nov. (16).Anatoxin-a, a neurotoxic bicyclic alkaloid, has been detected in freshwater bodies worldwide (4). Anatoxin-a production has been found in Anabaena, Aphanizomenon, Cylindrospermum, Oscillatoria sp., and Phormidium strains (4). Anatoxin-a is a potent agonist for the nicotinic acetylcholine receptor. Its toxic effects include muscle fasciculation, gasping, convulsions, and death by respiratory arrest in vertebrates (2).Cylindrospermopsin is a potent alkaloid hepatotoxin produced by planktonic cyanobacteria of the order Nostocales. It was first detected in Australian Cylindrospermopsis raciborskii strains (12) and is additionally produced by Anabaena bergii Ostenfeld (36), Umezakia natans M. Watanabe (11), Aphanizomenon ovalisporum (Forti) (37), and A. flos-aquae (33). CYN results in liver, kidney, intestinal, and lung damage (13) and inhibits protein synthesis (40).Overall knowledge of the cyanobacterial sources of PSP toxins, ATX, and CYN is scarce. To identify the producers of such toxins, we isolated and investigated 92 Aphanizomenon, Anabaena, and Anabaenopsis strains from five northeast German water bodies dominated by cyanobacteria of the order Nostocales. All strains were morphologically and phylogenetically classified and screened for the presence of toxin-encoding genes and for the ability to produce cyanobacterial toxins using a polyphasic approach including enzyme-linked immunosorbent assay (ELISA) and liquid chromatography with tandem mass spectrometry (LC-MS/MS).  相似文献   

2.
The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.  相似文献   

3.
The traditional genus Aphanizomenon comprises a group of filamentous nitrogen-fixing cyanobacteria of which several memebers are able to develop blooms and to produce toxic metabolites (cyanotoxins), including hepatotoxins (microcystins), neurotoxins (anatoxins and saxitoxins) and cytotoxins (cylindrospermopsin). This genus, representing geographically widespread and extensively studied cyanobacteria, is in fact heterogeneous and composed of at least five phylogenetically distant groups (Aphanizomenon, Anabaena/Aphanizomenon like cluster A, Cuspidothrix, Sphaerospermopsis and Chrysosporum) whose taxonomy is still under revision. This review provides a thorough insight into the phylogeny, ecology, biogeography and toxicogenomics (cyr, sxt, and ana genes) of the five best documented “Aphanizomenon” species with special relevance for water risk assessment: Aphanizomenon flos-aquae, Aphanizomenon gracile, Cuspidothrix issatschenkoi, Sphaerospermopsis aphanizomenoides and Chrysosporum ovalisporum. Aph. flos-aquae, Aph. gracile and C. issatschenkoi have been reported from temperate areas only whereas S. aphanizomenoides shows the widest distribution from the tropics to temperate areas. Ch. ovalisporum is found in tropical, subtropical and Mediterranean areas. While all five species show moderate growth rates (0.1–0.4 day−1) within a wide range of temperatures (15–30 °C), Aph. gracile and A. flos-aquae can grow from around (or below) 10 °C, whereas Ch. ovalisporum and S. aphanizomenoides are much better competitors at high temperatures over 30 °C or even close to 35 °C. A. gracile has been confirmed as the producer of saxitoxins and cylindrospermopsin, C. issatschenkoi of anatoxins and saxitoxins and Ch. ovalisporum of cylindrospermopsin. The suspected cylindrospermopsin or anatoxin-a production of A. flos-aquae or microcystin production of S. aphanizomenoides is still uncertain. This review includes a critical discussion on the the reliability of toxicity reports and on the invasive potential of “Aphanizomenon” species in a climate change scenario, together with derived knowledge gaps and research needs. As a whole, this work is intended to represent a key reference for scientists and water managers involved in the major challenges of identifying, preventing and mitigating toxic Aphanizomenon blooms.  相似文献   

4.
5.
The freshwater cyanobacterium Aphanizomenon gracile is one of the most widely distributed producers of the potent neurotoxins saxitoxin (STX) and its derivatives (paralytic shellfish poisoning toxins, PSP toxins). However, the phylogeny of STX biosynthesis genes and the regulation of STX production and release remain poorly studied in the genus Aphanizomenon. In this study, two A. gracile strains from Spanish freshwaters were grown in semi-continuous cultures under three temperatures (15, 20 and 28 °C) and their STX production and release were determined by Enzyme-Linked ImmunoSorbent Assay (ELISA). STX production was stable along the temperature range, with 1.4–2.3-fold shifts in biomass-standardized STX contents, and maxima of 0.22 μg equivalent STX mg−1 dry weight 15.3 fg equiv STX cell−1 and 15.1 μg equiv STX mg−1 Chl a. The extracellular fraction was remarkably high (13.6–35.3%), not clearly affected by temperature but with nitrate-depleted medium (BG110) inducing a 2-fold increase in extracellular content. STX production and release were not directly related to growth rates. The 16S rRNA phylogenetic analyses in sixteen A. gracile strains from Spanish and German freshwaters showed that PSP-producing A. gracile grouped within a monospecific and highly supported cluster, together with PSP-producing Aphanizomenon sp. NH-5 and clearly separated from a monospecific Aphanizomenon flos-aquae cluster. The sixteen A. gracile strains formed also monospecific and highly supported clusters for PSP-biosynthesis genes (sxtG, sxtI, sxtH and sxtX) together with Aphanizomenon sp. NH-5. This study evidences an elevated extracellular proportion of STX in A. gracile with importance for risk assessment, and supports the identification of Aphanizomenon sp. NH-5 as A. gracile.  相似文献   

6.
The freshwater cyanobacterium Cylindrospermopsis raciborskii spreads from tropical to temperate regions worldwide. This entails acclimation to varied light and temperature conditions. We studied the thermal and light acclimation of the photosynthetic machinery of C. raciborskii by monitoring alteration of the chlorophyll a and carotenoid content in German strains of C. raciborskii, in African and Australian strains of C. raciborskii, and in German strains of Aphanizomenon gracile, a native cyanobacterium belonging to the same order (Nostocales). Our results showed that temperate and tropical C. raciborskii strains did not differ in pigment acclimation to light and temperature. In contrast, the ratio of photoprotective carotenoids (namely the carotenoid glycoside 4-hydroxymyxol glycoside [aphanizophyll]) to chlorophyll a increased significantly more in C. raciborskii in comparison with A. gracile (1) with decreasing temperatures from 20 to 10°C and a moderate light intensity of 80?µmol photons m?2?s?1 and (2) with increasing light intensities at a suboptimal temperature of 15°C, compared to 20°C. We conclude that below 20°C photoinhibition is avoided by greater photoprotection in the invasive species C. raciborskii compared to the native species A. gracile.  相似文献   

7.
    
Frantiek Hindák 《Hydrobiologia》2000,438(1-3):107-116
Morphological variation of trichomes, heterocytes and akinetes in four species classified into the nostocalean genera Aphanizomenon Morren ex Bornet et Flahault or Anabaena Bory (Cyanophyta/Cyanobacteria) was studied from natural samples by LM and illustrated by drawings and micrographs. All investigated species, Aphanizomenon gracile (Lemmerm.) Lemmerm., A. aphanizomenoides (Forti) Komárek et Horecká, Anabaena bergii Ostenfeld, A. minderi Huber-Pestalozzi, occur in the plankton as solitary trichomes, similar to many representatives of the genus Anabaena. Main generic diagnostic characters of Aphanizomenon and Anabaena are discussed.  相似文献   

8.
Fifty‐three strains of the genus Aphanizomenon isolated from Chinese waters were employed to conduct morphological examination and sequencing of the 16S rRNA gene, rbcLX (RUBISCO), and cpcBA‐IGS gene regions. Based on morphological characteristics, the examined strains were divided into three morphotypes [Aph. flos‐aquae Bréb. ex Bornet et Flahault, Aph. gracile Lemmerm., and Aph. issatchenkoi (Usacer) Proshk.‐Lavr.]. Phylogenetic analysis based on 16S rRNA and rbcLX showed that Aphanizomenon strains could be divided into three main clades (Clade A of Aph. flos‐aquae, Clade B of Aph. gracile, and Clade C of Aph. issatchenkoi), but two additional clades formed by Aph. ovalisporum and Aph. aphanizomenoides were detected in the 16S rDNA‐based topology. All Aph. issatchenkoi strains contained an additional 175 nucleotides from the 779 to 954 nucleotide location in rbcLX region, compared with strains of Aph. flos‐aquae and Aph. gracile. The cpcBA‐IGS‐based phylogenetic tree revealed that Aph. issatchenkoi strains were not discriminated from Aph. flos‐aquae strains; however, a concatenated alignment of 16S rDNA, rbcLX, and cpcBA‐IGS led to the three distinct clades (Aph. flos‐aquae, Aph. gracile, and Aph. issatchenkoi, respectively). It is suggested that the taxonomic revision of Aphanizomenon and Anabaena genera is required to be performed by employing multilocus sequence analysis and polyphasic studies.  相似文献   

9.
Twenty-eight axenio planktonic cyanobacterial strains (10 Microcystis, three Oscillatoria, one Spirulina, one Aphanizomenon, 13 Anabaena) were investigated for their fatty acid composition by measurement of non-polar and hydroxy fatty acids. No 2-hydroxy fatty acids were detected in any strain, but 3-hydroxy fatty acids were detected in minor quantities in 24 strains. The highest portion of total fatty acids were non-polar fatty acids. Qualitative and quantitative analyses of 3-hydroxy fatty acids showed no taxonomic value in these strains, while the type of non-polar fatty acid composition was shown to be consistent within Microcystis and Anabaena strains, distinguishing them as type 4, characterized by the presence of 18:4, and type 2, characterized by 18:3 (α) of the Kenyon-Murata system. Two Oscillatoria agardhii Gomont strains were also included in the type 2 group due to the presence of 18: 3 (α), but the difference in characteristics of 16:2 and 16:3 between O. agardhii and Anabaena further divided type 2 into two subgroups: type 2A for Anabaena and type 2B for O. agardhii. A simplified unweighted pair group method with arithmetic averages (UPGMA) dendrogram demonstrated that the classification of 28 strains (Microcystis spp., Anabaena spp., Aphanizomenon flos-aquae (Lemmermann) Ralfs f. gracile (Lemmermann) Elenkin, O. agardhii and Spirullnasubsalsa Oersted ex Gomont based on numerical analysis of non-polar fatty acids corresponded to morphological species criteria, suggesting that non-polar fatty acid composition is a valuable chemical marker in the taxonomy of planktonic cyanobacteria. However, the fatty acid composition in Oscillatoria raciborskii is similar to that of Microcystis and very different from that of O. agardhii, suggesting its special position in Oscillatoria and the chemical diversity in the genus Oscillatoria.  相似文献   

10.
The biological role of cyanobacteria secondary metabolites is relatively unknown although several possible hypotheses have been discussed. In the following study the effect of cylindrospermopsin (CYN) and metabolites of non-CYN producing Cylindrospermopsis raciborskii strain on growth, alkaline phosphatase (ALP) activity and microcystin-LR (MC-LR) production in Microcystis aeruginosa was evaluated. Higher concentrations of CYN (10 and 50 μg L−1) induced toxicity effects demonstrated by significant growth inhibition and M. aeruginosa cell necrosis. Lower concentrations of CYN (1 and 5 μg L−1) slightly decreased growth rates but significantly up-regulated ALP activity. Moreover, under all studied CYN concentrations MC-LR production strongly decreased. Spent C. raciborskii medium mimicked the CYN action by inducing strong inhibition of M. aeruginosa growth and MC-LR production and through up-regulation of ALP activity. On the other hand, spent M. aeruginosa medium did not affect C. raciborskii growth and no alterations in ALP activity were observed. Co-culturing of these two species resulted in an increase of C. raciborskii contribution at the expense of M. aeruginosa. From the results we conclude that CYN can be involved in interspecific competition in cyanobacteria and that non-CYN producing C. raciborskii strains may produce a hitherto unknown bioactive compound(s) which can mimic CYN action.  相似文献   

11.
Cylindrospermopsis raciborskii is a toxic bloom forming cyanobacteria that is a common component of the phytoplankton assemblage in temperate freshwaters, as well as in temperate climates. This species is of major concern in public health, due to its known ability to produce toxins, including cylindrospermopsin and paralytic shellfish poisoning toxin (PSP).In this study, M13 PCR fingerprinting, ERIC PCR fingerprinting and amplification of the internal transcribed spacer (ITS) region were used to characterize nine cultured strains of C. raciborskii, sourced from several freshwater lakes and rivers in Portugal, and two other Australian. Strains belonging to other taxa including Microcystis aeruginosa, Aphanizomenon spp., Planktothrix agardhii and Oscillatoria neglecta were also analysed to evaluate the taxonomical potential of the fingerprinting methods.Data obtained from genomic fingerprinting were used to perform hierarchical cluster analysis and demonstrated ability to differentiate strains at intra-specific level. However, the high level of variability prevents their use as an identification tool. ITS amplification displayed intra-specific polymorphism both in number and length of the obtained amplicons, but revealed itself as a good method for strain clustering. The unsuccessful amplification of peptide synthetase (PS) and polyketide synthase (PKS) genes pointed to the inability of Portuguese C. raciborskii strains to produce cylindrospermopsin. HPLC analysis further confirmed this lack of toxicity, since negative results were obtained for cylindrospermopsin and PSP toxins.  相似文献   

12.
Cyanobacterial toxins have been regarded by some researchers as allelopathic substances that could modulate the growth of competitors. Nevertheless, often the concentrations of toxins used are too high to be considered ecologically relevant. In this work we tested the hypothesis that microcystin-LR (MC-LR) and cylindrospermopsin (CYN) at ecologically relevant concentrations have no allelopathic effects on some species of phytoplankton. Extracts containing the toxins as well as pure MC-LR and CYN toxins were used to assess their effects on the growth rates of Nannochloropsis sp., Chlamydomonas reinhardtii, and Chlorella vulgaris. Cyanobacterial crude extracts induced more pronounced effects on growth rates than pure toxins. Microcystis aeruginosa and Aphanizomenon ovalisporum crude extracts containing MC-LR and CYN at 0.025–2.5 mg l?1 stimulated growth rates of microalgae, whereas A. ovalisporum crude extracts containing 2.5 mg l?1 of CYN strongly inhibited growth rates of microalgae after 4 and 7 days of exposure. MC-LR and CYN at environmentally occurring concentrations were unable to affect negatively the growth of microalgae, and therefore these molecules may play roles other than allelopathy in natural ecosystems.  相似文献   

13.
It is assumed that daphnids adjust the filter screen morphology in order to minimize the interference with cyanobacterial filaments. The aim of this study was to investigate the impact of filamentous cyanobacteria (Aphanizomenon gracile Lemmermann, Cylindrospermopsis raciborskii Woloszynska Seenaya et Subba Raju) on the thickness and length of setae of the third pair of thoracic limbs of Daphnia magna. The second objective was to assess whether the setae modifications could improve the performance of daphnids in the presence of cyanobacteria. Three clones of Daphnia magna Straus were cultured with: green algae; green algae with filaments of Cylindrospermopsis; and green algae with filaments of Aphanizomenon. The size and age of animals in the first reproduction cycle as well as the number of offspring were recorded. Setae thickness and length were measured in the central part of each endopodite. Additionally, we analyzed how the changes in setae morphology affect the fitness of experimental animals using the intrinsic rate of population increase calculated with the Euler–Lotka equation. The results showed that the thickness and length of setae increased in the presence of filamentous cyanobacteria. Moreover, cyanobacteria-induced setae thickening was positively correlated to the fitness of daphnids, which may indicate setae thickening as a phenotypic adaptation to cope with food stress caused by filamentous cyanobacteria.  相似文献   

14.
The invasive cyanobacterium Cylindrospermopsis raciborskii is increasingly spreading in temperate freshwater habitats worldwide and is of major concern due to its ability to produce potent toxins. It is, therefore, important to understand the mechanisms behind the dispersal of this species. Different hypotheses have been proposed to explain the phylogeography and mechanisms underlying the recent expansion of C. raciborskii into temperate latitudes, but there is still no conclusive evidence whether the obvious ecological success of C. raciborskii is due to selection mechanisms, physiological tolerance, climatic change or radiation after the last ice age. In the present study, new isolates of C. raciborskii from Europe and Africa were genetically characterised by sequencing the ITS1, PC-IGS, nifH and rpoC1 genes and compared to corresponding sequences of C. raciborskii available in GenBank in order to test different phylogeographical hypotheses. The strains were also morphologically examined and screened for production of the hepatotoxic cylindrospermopsin (CYN). We clearly demonstrate a variation among the populations of C. raciborskii from different geographical regions. The phylogenetic analyses revealed a clustering of the strains due to geographic origin. The ITS1 and nifH genes separated into American, European and Australian–African groups, whereas the PC-IGS and rpoC1 separated into American and European/Australian/African groups. An analysis of concatenated data supported the division into American, European and African/Australian groups, and even indicated a subdivision into an African and an Australian group. Our findings do not strongly support any of the existing hypotheses on the phylogeography of C. raciborskii, and most likely a combination of these hypotheses is the best approach to understand the evolution and dispersal of this species.  相似文献   

15.
The first appearance of Aphanizomenon ovalisporum in Lake Kinneret in August 1994 was apparently boosted by relatively high concentrations of total dissolved phosphorus (12 g P l-1 as compared to an average of 8 g P l-1). The increasing Aphanizomenon biomass in a lake in which phytoplankton are generally phosphate limited in summer and autumn was accompanied by high enzymatic activity of alkaline phosphatase, reaching values of 2830 nmol MU l-1 h-1, suggesting a great demand for phosphorus. In addition, the nitrogen requirement of the developing population of Aphanizomenon was partly provided by nitrogen fixation, as indicated by a high percentage of heterocysts. Laboratory experiments demonstrated that filtrate from an old Peridinium gatunense culture enhanced Aphanizomenon growth. Thus, it is postulated that the degradation of the massive Peridinium bloom in spring and early summer supported the development of A.ovalisporum. The high pH and alkalinity during the bloom of Aphanizomenon indicate that A.ovalisporum is probably a HCO3- user. After 1994, akinetes of A.ovalisporum were left in sediments and the water column, and could be a source for the next year's bloom. This possibility was demonstrated by inoculation of lake water and sediments into nitrogen-depleted BG-11 medium, resulting in the dominance of A.ovalisporum.   相似文献   

16.
Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C. raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.  相似文献   

17.
Cylindrospermopsin (CYN) is a cyanotoxin that has raised serious concerns about public health in many parts of the world. It can bioaccumulate and affect the health of aquatic organisms, but despite this, few studies have been conducted on CYN uptake and clearance in fish. In this paper, the authors evaluate the uptake and clearance of CYN in the muscle tissue and viscera of juvenile tilapia (Oreochromis niloticus) after exposure to aqueous extracts and whole cells of Cylindrospermopsis raciborskii (CYN-producer). CYN blended with commercial fish food, and three experiments were conducted. In the first trial, fish food, and aqueous extracts containing 0.31 μg CYN g−1 of food per day, was administered to tilapia for 15 days. In the second trial, fish were provided food and intact cells (5.4 μg CYN g−1 of food per day) for 15 days. In the last trial, they were provided fish food and aqueous extracts (0.8 μg CYN g−1 of food per day) for 12 days, and for the next 10 days, the animals were fed food without toxic cell extracts (to simulate a clearance period). The concentration of CYN in muscle tissue and viscera was analysed using ELISA. In the case of juvenile tilapia, the presence of CYN was higher in viscera than in muscle tissue, and the toxin remained in the tissues even after 10 days without the addition of contaminated food. The results suggest that tilapia represents a potential source of CYN transfer through the food web, and this shows the need for a continuous monitoring of this compound in organisms that are used for human and animal consumption.  相似文献   

18.
The effect of pH on copper toxicity to two planktonic blue-green algae, Aphanizomenon gracile and Oscillatoria redekei, was investigated. Growth rates of the algae without copper treatment decrease with pH, Aphanizomenon is earlier and more affected than Oscillatoria. On the other hand, pH-lowering leads sooner to a toxicity enhancement in Oscillatoria. In the acid range, toxicity retardation occurs in Aphanizomenon. At pH 5.1, shortening of the interval between copper toxicity and copper stimulus is characteristic for both species.  相似文献   

19.
Occurrences of rare cyanobacteria Anabaena reniformis Lemmerm. and Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek were recently detected at several localities in the Czech Republic. Two monoclonal strains of An. reniformis and one strain of Aph. aphanizomenoides were isolated from distant localities and different sampling years. They were characterized by a combination of morphological, genetic, and biochemical approaches. For the first time, partial 16S rRNA gene sequences were obtained for these morphospecies. Based on this gene, all of these strains clustered separately from other planktonic Anabaena and Aphanizomenon strains. They appeared in a cluster with Cylindrospermopsis Seenaya et Subba Raju and Raphidiopsis F. E. Fritsch et M. F. Rich, clustered closely together with two An. kisseleviana Elenkin strains available from GenBank. A new generic entity was defined (Sphaerospermum gen. nov., with the type species S. reniforme, based on the traditional species An. reniformis). These results contribute significantly to the knowledge base about genetic heterogeneity among planktonic Anabaena–like and Aphanizomenon–like morphospecies. Accordingly, the subgenus Dolichospermum, previously proposed for the group of planktonic Anabaena, should be revaluated. Secondary metabolite profiles of the An. reniformis and Aph. aphanizomenoides strains differed considerably from 17 other planktonic Anabaena strains of eight morphospecies isolated from Czech water bodies. Production of puwainaphycin A was found in both of the An. reniformis strains. Despite the relatively short phylogenetic distance from Cylidrospermopsis, the production of cylindrospermopsin was not detected in any of our strains.  相似文献   

20.
An attempt was made to find evidence that morphologically distinct terminal cells of filamentous cyanobacterium Aphanizomenon gracile strain CCALA 8 are capable of dividing and forming trichomes. Based on our current knowledge, the division of morphologically diversified terminal cells is possible in nostocalean cyanobacteria. However, this process has been observed only in a few species. Terminal cells of A. gracile differ morphologically from other vegetative cells of a trichome, as they are not hyaline and can sometimes be found as solitary cells in cultures. Hence, it was reasonable for us to suspect that these cells are capable of dividing and forming trichomes. We observed terminal cells under a light and transmission electron microscope. Microscopic observations revealed that the septum formed in both solitary terminal cells and in terminal cells attached to trichomes. Our study is the first to demonstrate division and renewal of trichomes in terminal cells of A. gracile. Previously, such mode of reproduction was described only for another nostocalean cyanobacterium Raphidiopsis mediterranea. Moreover, our findings further emphasize the variability among members that belong to the genus Aphanizomenon , in which a type species (A. flos‐aquae) has hyaline cells incapable of dividing and renewing trichomes, while A. gracile can additionally propagate by solitary terminal cells division. This additional feature distinguishing A. gracile from typical species of Aphanizomenon, such as A. flos‐aquae, might be valuable for resolving taxonomic position of the species considering ambiguous genetic relationship between A. gracile and A. flos‐aquae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号