首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), collectively termed human pluripotent stem cells (hPSCs), are typically derived and maintained in adherent and semi-defined culture conditions. Recently a number of groups, including Chen et al., 2012, have demonstrated that hESCs can now be expanded efficiently and maintain pluripotency over long-term passaging as aggregates in a serum-free defined suspension culture system, permitting the preparation of scalable cGMP derived hPSC cultures for cell banking, high throughput research programs and clinical applications. In this short commentary we describe the utility and potential future uses of suspension culture systems for hPSCs.  相似文献   

2.
Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.  相似文献   

3.
Human pluripotent stem cells (hPSCs) have the potential for unlimited expansion and differentiation into cell types of all three germ layers. Cryopreservation is a key process for successful application of hPSCs. However, the current conventional method leads to poor recovery of hPSCs after thawing. Here, we demonstrate a highly efficient recovery method for hPSC cryopreservation by slow freezing and single‐cell dissociation. After confirming hPSC survivability after freeze‐thawing, we found that hPSCs that were freeze‐thawed as colonies showed markedly decreased survival, whereas freeze‐thawed single hPSCs retained the majority of their viability. These observations indicated that hPSCs should be cryopreserved as single cells. Freeze‐thawed single hPSCs efficiently adhered and survived in the absence of a ROCK inhibitor by optimization of the seeding density. The high recovery rate enabled conventional colony passaging for subculture within 3 days post‐thawing. The improved method was also adapted to a xeno‐free culture system. Moreover, the cell recovery postcryopreservation was highly supported by coating culture surfaces with human laminin‐521 that promotes adhesion of dissociated single hPSCs. This simplified but highly efficient cryopreservation method allows easy handling of cells and bulk storage of high‐quality hPSCs. genesis 52:49–55, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Prolonged exposure to aluminium may impact health. Aluminium’s deleterious effects are mostly attributed to its selective accumulation in particular organs and cell types. Occupational exposure to aluminium is allied with a reduced level of serum prolactin, a stress peptide hormone mainly synthesised and secreted by the anterior pituitary lactotrophs. Our aim was to study the effect of aluminium on the viability of rat lactotrophs in primary suspension cultures where multicellular aggregates tend to form, comprising approximately two thirds of the total cell population as confirmed by confocal microscopy. Flow cytometric light scattering of calcein acetoxymethyl ester and ethidium homodimer-1 labelled cells was used to define subpopulations of live and dead cells in heterogeneous suspensions comprised of single cells and multicellular aggregates of distinct size. Concentration-dependent effects of AlCl3 were observed on aggregate size and cell survival. After 24-h exposure to 3 mM AlCl3, viability of single cells declined from 5% to 3%, while in multicellular aggregates, viability declined from 23% to 20%. The proportion of single cells increased from 30% to 42% within the same concentration range, while in large aggregates, the proportion remained approximately constant representing 35% of the cell suspension. In large aggregates, cell viability (75%) remained unaltered after exposure to AlCl3 concentrations up to 300 μM, while in single cells, viability was halved at 30 μM. In conclusion, our finding indicates that prolonged exposure to aluminium may lead to significant loss of pituitary cells.  相似文献   

5.
6.
Natural aggregates of Baby Hamster Kidney cells were grown in stirred vessels operated as repeated-batch cultures during more than 600 hours. Different protocols were applied to passaging different fractions of the initial culture: single cells, large size distributed aggregates and large aggregates. When single cells or aggregates with the same size distribution found in culture are used as inoculum, it is possible to maintain semi-continuous cultures during more than 600 hours while keeping cell growth and viability. These results suggest that aggregate culture in large scale might be feasible, since a small scale culture can easily be used as inoculum for larger vessels without noticeable modification of the aggregate chacteristics. However, when only the large aggregates are used as inoculum, it was shown that much lower cell concentrations are obtained, cell viability in aggregates dropping to less than 60%. Under this selection procedure, aggregates maintain a constant size, larger than under batch experiments, up to approximately 400 hours; after this time, aggregate size increases to almost twice the size expected from batch cultures.  相似文献   

7.
Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control.  相似文献   

8.
Recombinant human kidney epithelial 293 cells were cultivated as aggregates in suspension. The concentration calcium ion, in the range of 100 muM to 1mM, affected the rate of aggregate formation. During the course of cultivation the size distribution of aggregates shifted and the fraction of larger aggregates increased. This effect was more profound in cultures with a high calcium concentration. Scanning and transmission microscopic examination of the aggregates revealed that cell packing was greater in the high calcium cultures and that ultrastructural integrity was retained in aggregates from both low and high calcium cultures. Confocal microscopy was applied to examine the viability of cells in the interior of the aggregates. High viability was observed in the aggregates obtained from exponentially growing cultures. Aggregates from the high calcium culture in the stationary phase exhibited lower viability in the interior. With its ease of retention in a perfusion bioreactor, aggregate cultures offer an alternative choice for large-scale operation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
Acidaminococcus fermentans utilized citrate or the citrate analog aconitate as an energy source for growth, and these tricarboxylates were used simultaneously. Citrate utilization and uptake showed biphasic kinetics. High-affinity citrate uptake had a Kt of 40 μM, but the Vmax was only 25 nmol/mg of protein per min. Low-affinity citrate utilization had a 10-fold higher Vmax, but the Ks was greater than 1.0 mM. Aconitate was a competitive inhibitor (Ki = 34μM) of high-affinity citrate uptake, but low-affinity aconitate utilization had a 10-fold-lower requirement for sodium than did low-affinity citrate utilization. On the basis of this large difference in sodium requirements, it appeared that A. fermentans probably has two systems of tricarboxylate uptake: (i) a citrate/aconitate carrier with a low affinity for sodium and (ii) an aconitate carrier with a high affinity for sodium. Citrate was catabolized by a pathway involving a biotin-requiring, avidin-sensitive, sodium-dependent, membrane-bound oxaloacetate decarboxylase. The cells also had aconitase, but this enzyme was unable to convert citrate to isocitrate. Since cell-free extracts converted either aconitate or glutamate to 2-oxoglutarate, it appeared that aconitate was being catabolized by the glutaconyl-CoA decarboxylase pathway. Exponentially growing cultures on citrate or citrate plus aconitate were inhibited by the sodium/proton antiporter, monensin. Because monensin had no effect on cultures growing with aconitate alone, it appeared that citrate metabolism was acting as an inducer of monensin sensitivity. A. fermentans cells always had a low proton motive force (<50 mV), and cells treated with the protonophore TCS (3,3′,4′,5-tetrachlorosalicylanide) grew even though the proton motive force was less than 20 mV. On the basis of these results, it appeared that A. fermentans was depending almost exclusively on a sodium motive force for its membrane energetics.  相似文献   

10.
Human pluripotent (embryonic or induced) stem cells (hPSCs) have many potential applications, not only for research purposes but also for clinical and industrial uses. While culturing these cells as undifferentiated lines, an adherent cell culture based on supportive layers or matrices is most often used. However, the use of hPSCs for industrial or clinical applications requires a scalable, reproducible and controlled process. Here we present a suspension culture system for undifferentiated hPSCs, based on a serum-free medium supplemented with interleukins and basic fibroblast growth factor, suitable for the mass production of these cells. The described system supports a suspension culture of hPSC lines, in both static and dynamic cultures. Results showed that hPSCs cultured with the described dynamic method maintained all hPSC features after 20 passages, including stable karyotype and pluripotency, and increased in cell numbers by 25-fold in 10 d. Thus, the described suspension method is suitable for large-scale culture of undifferentiated hPSCs.  相似文献   

11.
In this study we focused on gravity-sensitive proteins of two human thyroid cancer cell lines (ML-1; RO82-W-1), which were exposed to a 2D clinostat (CLINO), a random positioning machine (RPM) and to normal 1g-conditions. After a three (3d)- or seven-day-culture (7d) on the two devices, we found both cell types growing three-dimensionally within multicellular spheroids (MCS) and also cells remaining adherent (AD) to the culture flask, while 1g-control cultures only formed adherent monolayers, unless the bottom of the culture dish was covered by agarose. In this case, the cytokines IL-6 and IL-8 facilitated the formation of MCS in both cell lines using the liquid-overlay technique at 1g. ML-1 cells grown on the RPM or the CLINO released amounts of IL-6 and MCP-1 into the supernatant, which were significantly elevated as compared to 1g-controls. Release of IL-4, IL-7, IL-8, IL-17, eotaxin-1 and VEGF increased time-dependently, but was not significantly influenced by the gravity conditions. After 3d on the RPM or the CLINO, an accumulation of F-actin around the cellular membrane was detectable in AD cells of both cell lines. IL-6 and IL-8 stimulation of ML-1 cells for 3d and 7d influenced the protein contents of ß1-integrin, talin-1, Ki-67, and beta-actin dose-dependently in adherent cells. The ß1-integrin content was significantly decreased in AD and MCS samples compared with 1g, while talin-1 was higher expressed in MCS than AD populations. The proliferation marker Ki-67 was elevated in AD samples compared with 1g and MCS samples. The ß-actin content of R082-W-1 cells remained unchanged. ML-1 cells exhibited no change in ß-actin in RPM cultures, but a reduction in CLINO samples. Thus, we concluded that simulated microgravity influences the release of cytokines in follicular thyroid cancer cells, and the production of ß1-integrin and talin-1 and predicts an identical effect under real microgravity conditions.  相似文献   

12.
13.
Spheroid cultures of cancer cells may better reflect characteristics of tumors than traditional monolayer cultures. Furthermore, low-passage cancer cell lines recapitulate the properties of the original tumor cells more closely than commonly used standard cell lines that experience artificial selection processes and mutations over years of passaging. Here we established spheroid cultures of the low-passage colon cancer cell line COGA-5 and stable COGA-12 aggregates with local areas of compaction. The proteomes of both three-dimensional cultures were analyzed versus their corresponding two-dimensional cultures. 2-D gel electrophoresis followed by peptide mass fingerprinting identified three differently expressed proteins in COGA-5 spheroids (acidic calponin, hydroxyprostaglandin dehydrogenase, and lamin A/C) and two in COGA-12 partly compact aggregates (two isoelectric variants of the acidic ribosomal protein P0) compared to the respective monolayer cultures. The lamin A/C spot showed a lower molecular weight in the 2-D gel (30 kDa) than expected for full-length lamin. Further Western blot analysis and immunocytochemistry identified the lamin protein as a caspase-6-cleavage product in apoptotic cells of the spheroid. Similar caspase-dependent lamin cleavage was observed in monolayer cultures after serum withdrawal and further increased under hypoxic conditions, suggesting cleaved lamin as an indicator for apoptotic stress. In conclusion, proteome analysis of multicellular spheroids versus monolayers cultures identifies differential protein expression relevant to tumor cell proliferation, survival, and chemoresistance and thus may reveal novel targets for cancer therapy.  相似文献   

14.
15.
The embryonic stem cell line, S25, is a genetically modified line that allows lineage selection of neural cells (M. Li, L. Lovell-Badge, A. Smith (1998) Current Biology 8: 971–974). Here, the growth parameters of this cell line were analysed. Serial passaging in adherent conditions enabled these cells to grow rapidly (average specific growth rates of 0.035 h–1) and generate high viable cell densities (above 90%). The aggregation of the S25 cells into embryoid bodies (EBs) was also studied, indicating limited cell growth (maximum cell densities of 2.7×105 cells ml–1) and a high variability of aggregate size (70–400 m after 8 d). Enzymatic dissociation of EBs with 1% (v/v) trypsin gave highest cell viability (91%) and density (1.4×104 cells ml–1) and the cells thus obtained are able to differentiate into neurons.  相似文献   

16.
Hydrodynamic effects on BHK cells grown as suspended natural aggregates   总被引:1,自引:0,他引:1  
Baby hamster kidney (BHK) cell aggregates grown in stirred vessels with different working volumes and impeller sizes were characterized. Using batch cultures, the range of agitation rates studied (25-100 rpm) led to aggregates with maximum sizes of 150 mum. Necrotic centers were not observed and cell specific productivity was independent of aggregate size. High cell viability was found for both single and adherent cells without an increase in cell death when agitation rate was increased. The increase in agitation rate affected aggregates by reducing their size and increasing their concentration and cell concentration in aggregates, while increasing the fraction of free cells in suspension. The experimental relationship between aggregate size and power dissipation rate per unit of mass was close to -1/4, suggesting a correlation with a critical turbulence microscale; this was independent of vessel scale and impeller geometry over the range investigated. Viscous stresses in the viscous dissipation subrange (below Kolmogoroff eddies) appear to be responsible for aggregate breakage. Under intense agitation BHK cells grown in the absence of microcarriers existed as aggregates without cell damage, whereas cells grown on the surface of microcarriers were largely reduced. This is a clear advantage for scaleup purposes if aggregates are used as a natural immobilization system in stirred vessels. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
For the commercially established process of paclitaxel production with Taxus chinensis plant cell culture, the size of plant cell aggregates and phenotypic changes in coloration during cultivation have long been acknowledged as intangible parameters. So far, the variability of aggregates and coloration of cells are challenging parameters for any viability assay. The aim of this study was to investigate simple and non-toxic methods for viability determination of Taxus cultures in order to provide a practicable, rapid, robust and reproducible way to sample large amounts of material. A further goal was to examine whether Taxus aggregate cell coloration is related to general cell viability and might be exploited by microscopy and image analysis to gain easy access to general cell viability. The Alamar Blue assay was found to be exceptionally eligible for viability estimation. Moreover, aggregate coloration, as a morphologic attribute, was quantified by image analysis and found to be a good and traceable indicator of T. chinensis viability.  相似文献   

18.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

19.
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.  相似文献   

20.
The application of DNA flow cytometry (FCM) for analysis of sodium butyrate-induced intercellular adhesion in human carcinoma (HeLa S3) cell cultures is described. To prepare cell suspensions for FCM, the monolayers of cells were treated with medium containing 10% serum, 0.2% non-ionic detergent Triton X-100 and 1 μg/ml DNA fluorochrome 4,6′-diamidino-2-phenylindole (DAPI). Total numbers of single cells, and aggregates containing two, three, four or more cells, were determined from DNA histograms. In cultures treated with 5 mM butyrate for 16 h, more than 80% of the cells were aggregated. Intercellular adhesion began to appear 8 h after addition of butyrate, was maximal at 16–24 h and stable in the presence of butyrate, but disappeared 24 h after its removal. Treatment with EDTA (0.2%) dissociated only 50%, whereas trypsin (0.1%) separated all cell aggregates into single cells. Actinomycin D (actD) (0.5 μg/ml) prevented cell adhesion while blocking of cells in S phase with 250 μM 5-fluorouracil or 10 μM methotrexate did not interfere with aggregation. The number of cell aggregates estimated from DNA histograms of butyrate-treated HeLa S3 cultures was the same after staining with DAPI in the presence of Triton X-100 or after vital staining with Hoechst 33342. The DNA content was used as a marker to estimate the cellular composition of aggregates in mixed cultures of HeLa S3 cells and human fibroblasts (U cells). Intercellular adhesion in these cultures was seen only between HeLa S3 cells, indicating specificity of butyrate-induced cell aggregation. FCM provides fast automatic measurement of cell aggregate formation, estimates frequency of aggregates containing different cell numbers, shows participation of cells at different cycle phases in aggregates, and allows the detection of homotypic from heterotypic cell aggregates if the interacting cells have different DNA ploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号