首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.  相似文献   

2.
The Schizosaccharomyces pombe exchange factor Rgf1p specifically regulates Rho1p during polarized growth. Rgf1p activates the β-glucan synthase (GS) complex containing the catalytic subunit Bgs4p and is involved in the activation of growth at the second end, a transition that requires actin reorganization. In this work, we investigated Rgf1p signaling and observed that Rgf1p acted upstream from the Pck2p-Pmk1p MAPK signaling pathway. We noted that Rgf1p and calcineurin play antagonistic roles in Cl homeostasis; rgf1Δ cells showed the vic phenotype (viable in the presence of immunosuppressant and chlorine ion) and were unable to grow in the presence of high salt concentrations, both phenotypes being characteristic of knockouts of the MAPK components. In addition, mutations that perturb signaling through the MAPK pathway resulted in defective cell integrity (hypersensitivity to caspofungin and β-glucanase). Rgf1p acts by positively regulating a subset of stimuli toward the Pmk1p-cell integrity pathway. After osmotic shock and cell wall damage HA-tagged Pmk1p was phosphorylated in wild-type cells but not in rgf1Δ cells. Finally, we provide evidence to show that Rgf1p regulates Pmk1p activation in a process that involves the activation of Rho1p and Pck2p, and we demonstrate that Rgf1p is unique in this signaling process, because Pmk1p activation was largely independent of the other two Rho1p-specific GEFs, Rgf2p and Rgf3p.  相似文献   

3.
We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl- in fission yeast. We also demonstrated that knockout of the components of the Pmk1 mitogen-activated protein kinase (MAPK) pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl-. Using this interaction between calcineurin and Pmk1 MAPK, here we developed a genetic screen that aims to identify new regulators of the Pmk1 signaling and isolated vic (viable in the presence of immunosuppressant and chloride ion) mutants. One of the mutants, vic1-1, carried a missense mutation in the cpp1+ gene encoding a beta subunit of the protein farnesyltransferase, which caused an amino acid substitution of aspartate 155 of Cpp1 to asparagine (Cpp1(D155N)). Analysis of the mutant strain revealed that Rho2 is a novel target of Cpp1. Moreover, Cpp1 and Rho2 act upstream of Pck2-Pmk1 MAPK signaling pathway, thereby resulting in the vic phenotype upon their mutations. Interestingly, compared with other substrates of Cpp1, defects of Rho2 function were more phenotypically manifested by the Cpp1(D155N) mutation. Together, our results demonstrate that Cpp1 is a key component of the Pck2-Pmk1 signaling through the spatial control of the small GTPase Rho2.  相似文献   

4.
5.
Schizosaccharomyces pombe rho1(+) and rho2(+) genes are involved in the control of cell morphogenesis, cell integrity, and polarization of the actin cytoskeleton. Although both GTPases interact with each of the two S. pombe protein kinase C homologues, Pck1p and Pck2p, their functions are distinct from each other. It is known that Rho1p regulates (1,3)beta-D-glucan synthesis both directly and through Pck2p. In this paper, we have investigated Rho2p signaling and show that pck2 delta and rho2 delta strains display similar defects with regard to cell wall integrity, indicating that they might be in the same signaling pathway. We also show that Rho2 GTPase regulates the synthesis of alpha-D-glucan, the other main structural polymer of the S. pombe cell wall, primarily through Pck2p. Although overexpression of rho2(+) in wild-type or pck1 delta cells is lethal and causes morphological alterations, actin depolarization, and an increase in alpha-D-glucan biosynthesis, all of these effects are suppressed in a pck2 delta strain. In addition, genetic interactions suggest that Rho2p and Pck2p are important for the regulation of Mok1p, the major (1-3)alpha-D-glucan synthase. Thus, a rho2 delta mutation, like pck2 delta, is synthetically lethal with mok1-664, and the mutant partially fails to localize Mok1p to the growing areas. Moreover, overexpression of mok1(+) in rho2 delta cells causes a lethal phenotype that is completely different from that of mok1(+) overexpression in wild-type cells, and the increase in alpha-glucan is considerably lower. Taken together, all of these results indicate the presence of a signaling pathway regulating alpha-glucan biosynthesis in which the Rho2p GTPase activates Pck2p, and this kinase in turn controls Mok1p.  相似文献   

6.
7.
The aberrant dysregulation of the inducible form of nitric oxide synthase (NOS2) is thought to play a role in many inflammatory disorders including cystic fibrosis (CF). The complex regulation of NOS2 expression is the subject of intense investigation, and one intriguing regulatory pathway known to influence NOS2 expression is the Rho GTPase cascade. We examined NOS2 regulation in response to inflammatory cytokines in a human alveolar epithelial cell line treated with inhibitors of different upstream and downstream components of the Rho GTPase pathway to better define potential signaling mechanisms. Statin-mediated 3-hydroxy-3-methylglutaryl-CoA reductase inhibition increased cytokine-dependent activation of the NOS2 promoter, reversible by the addition of geranylgeranyl pyrphosphate. However, inhibition of Rho-associated kinase (ROCK) with Y-27632 resulted in a decrease in NOS2 promoter activity, yet an increase in NOS2 mRNA and protein levels. Our results suggest that prenylation events influence NOS2 promoter activity independently of the Rho GTPase pathway and that Rho GTPase signaling mediated through ROCK suppresses NOS2 production downstream of promoter function at the message and protein level.  相似文献   

8.
Eisosomes are multiprotein structures that generate linear invaginations at the plasma membrane of yeast cells. The core component of eisosomes, the BAR domain protein Pil1, generates these invaginations through direct binding to lipids including phosphoinositides. Eisosomes promote hydrolysis of phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) by functioning with synaptojanin, but the cellular processes regulated by this pathway have been unknown. Here, we found that PI(4,5)P2 regulation by eisosomes inhibits the cell integrity pathway, a conserved MAPK signal transduction cascade. This pathway is activated by multiple environmental conditions including osmotic stress in the fission yeast Schizosaccharomyces pombe. Activation of the MAPK Pmk1 was impaired by mutations in the phosphatidylinositol (PI) 5-kinase Its3, but this defect was suppressed by removal of eisosomes. Using fluorescent biosensors, we found that osmotic stress induced the formation of PI(4,5)P2 clusters that were spatially organized by eisosomes in both fission yeast and budding yeast cells. These cortical clusters contained the PI 5-kinase Its3 and did not assemble in the its3-1 mutant. The GTPase Rho2, an upstream activator of Pmk1, also co-localized with PI(4,5)P2 clusters under osmotic stress, providing a molecular link between these novel clusters and MAPK activation. Our findings have revealed that eisosomes regulate activation of MAPK signal transduction through the organization of cortical lipid-based microdomains.  相似文献   

9.
Schizosaccharomyces pombe Rho2 GTPase regulates alpha-D-glucan synthesis and acts upstream of Pck2 to activate the MAP kinase pathway for cell integrity. However, little is known about its regulation. Here we describe Rga2 as a Rho2 GTPase-activating protein (GAP) that regulates cell morphology. rga2+ gene is not essential for growth but its deletion causes longer and thinner cells whereas rga2+ overexpression causes shorter and broader cells. rga2+ overexpression also causes abnormal accumulation of Calcofluor-stained material and cell lysis, suggesting that it also participates in cell wall integrity. Rga2 localizes to growth tips and septum region. The N-terminal region of the protein is required for its correct localization whereas the PH domain is necessary exclusively for Rga2 localization to the division area. Also, Rga2 localization depends on polarity markers and on actin polymerization. Rga2 interacts with Rho2 and possesses in vitro and in vivo GAP activity for this GTPase. Accordingly, rga2Delta cells contain more alpha-D-glucan and therefore partially suppress the thermosensitivity of mok1-664 cells, which have a defective alpha-D-glucan synthase. Additionally, genetic interactions and biochemical analysis suggest that Rga2 regulates Rho2-Pck2 interaction and might participate in the regulation of the MAPK cell integrity pathway.  相似文献   

10.
To initiate and establish infection in mammals, the opportunistic fungal pathogen Cryptococcus neoformans must survive and thrive upon subjection to host temperature. Primary maintenance of cell integrity is controlled through the protein kinase C1 (PKC1) signaling pathway, which is regulated by a Rho1 GTPase in Saccharomyces cerevisiae. We identified three C. neoformans Rho GTPases, Rho1, Rho10, and Rho11, and have begun to elucidate their role in growth and activation of the PKC1 pathway in response to thermal stress. Western blot analysis revealed that heat shock of wild-type cells resulted in phosphorylation of Mpk1 mitogen-activated protein kinase (MAPK). Constitutive activation of Rho1 caused phosphorylation of Mpk1 independent of temperature, indicating its role in pathway regulation. A strain with a deletion of RHO10 also displayed this constitutive Mpk1 phosphorylation phenotype, while one with a deletion of RHO11 yielded phosphorylation similar to that of wild type. Surprisingly, like a rho10Δ strain, a strain with a deletion of both RHO10 and RHO11 displayed temperature sensitivity but mimicked wild-type phosphorylation, which suggests that Rho10 and Rho11 have coordinately regulated functions. Heat shock-induced Mpk1 phosphorylation also required the PKC1 pathway kinases Bck1 and Mkk2. However, Pkc1, thought to be the major regulatory kinase of the cell integrity pathway, was dispensable for this response. Together, our results argue that Rho proteins likely interact via downstream components of the PKC1 pathway or by alternative pathways to activate the cell integrity pathway in C. neoformans.  相似文献   

11.
In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-depedent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.  相似文献   

12.
13.
Rho proteins are key regulators of cellular morphogenesis, but their function in filamentous fungi is poorly understood. By generating conditional rho‐1 mutants, we dissected the function of the essential GTPase RHO1 in cell polarization and maintenance of cell wall integrity in Neurospora crassa. We identified NCU00668/RGF1 as RHO1‐specific exchange factor, which controls actin organization and the cell wall integrity MAK1 MAP kinase pathway through the direct interaction of active RHO1 with the formin BNI1 and PKC1 respectively. The activity of RGF1 is controlled by an intramolecular interaction of its DEP and GEF domains that blocks the activation of the GTPase. Moreover, the N‐terminal region including the DEP domain of RGF1 interacts with the plasma membrane sensor NCU06910/WSC1, potentially to activate the cell wall integrity pathway. RHO1 also functions as regulatory subunit of the glucan synthase. N. crassa possesses a second GTPase, RHO2, that is highly homologous to RHO1. RHO2 is of minor importance for growth and does not interact with BNI1. Conditional rho‐1;rho‐2 double mutants display strong synthetic growth and cell polarity defects. We show that RHO2 does not regulate glucan synthase activity and the actin cytoskeleton, but physically interacts with PKC1 to regulate the cell wall integrity pathway.  相似文献   

14.
In Saccharomyces cerevisiae, a variety of stresses and aggressions to the cell wall stimulate the activation of the cell wall integrity MAPK pathway, which triggers the expression of a series of genes important for the maintenance of cell wall homeostasis. This MAPK module lies downstream of the Rho1 small GTPase and protein kinase C Pkc1 and consists of MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the Slt2 MAPK. In agreement with previous reports suggesting that Mkk1 and Mkk2 were functionally redundant, we show here that both Mkk1 and Mkk2 alone or even chimerical proteins constructed by interchanging their catalytic and regulatory domains are able to efficiently maintain signal transduction through the pathway. Both Mkk1 and Mkk2 are phosphorylated in vivo concomitant to activation of the cell integrity pathway. Interestingly, hyperphosphorylation of the MEKs required not only the upstream components of the pathway, but also a catalytically competent Slt2 MAPK downstream. Active Slt2 purified from yeast extracts was able to phosphorylate Mkk1 and Mkk2 in vitro. We have mapped Ser(50) as a direct phosphorylation target for Slt2 in Mkk2. However, substitution of all (Ser/Thr)-Pro canonical MAPK target sites with alanine did not totally abrogate Slt2-dependent Mkk2 phosphorylation. Mutation or deletion of a conserved MAPK-docking site at the N-terminal extension of Mkk2 precluded its interaction with Slt2 and negatively affected retrophosphorylation. Our data show that the cell wall integrity MAPKKs are targets for their downstream MAPK, suggesting the existence of complex feedback regulatory mechanisms at this level.  相似文献   

15.
The Rho family of small GTPases plays a central role in intracellular signal transduction, particularly in reorganization of the actin cytoskeleton. Rho activity induces cell contractility, whereas Rac promotes cellular protrusion, which counteracts Rho signaling. In this regard, the reciprocal balance between these GTPases determines cell morphology and migratory behavior. Here we demonstrate that Tiam1/Rac1 signaling is able to antagonize Rho activity directly at the GTPase level in COS-7 cells. p190-RhoGAP plays a central regulatory role in this signaling pathway. Interfering with its activation by Src-kinase-dependent tyrosine phosphorylation or its recruitment to the membrane through interaction with the SH2 domains of p120-RasGAP blocks the Tiam1-mediated rapid downregulation of Rho. This process is mediated by Rac1, but not by Rac2 or Rac3 isoforms. Our data provide evidence for a biochemical pathway of the reciprocal regulation of two related small GTPases, which are key elements in cell migration.  相似文献   

16.
Krause SA  Xu H  Gray JV 《Eukaryotic cell》2008,7(11):1880-1887
Budding yeast Saccharomyces cerevisiae contains one protein kinase C (PKC) isozyme encoded by the essential gene PKC1. Pkc1 is activated by the small GTPase Rho1 and plays a central role in the cell wall integrity (CWI) signaling pathway. This pathway acts primarily to remodel the cell surface throughout the normal life cycle and upon various environmental stresses. The pathway is heavily branched, with multiple nonessential branches feeding into and out of the central essential Rho1-Pkc1 module. In an attempt to identify novel components and modifiers of CWI signaling, we determined the synthetic lethal genetic network around PKC1 by using dominant-negative synthetic genetic array analysis. The resulting mutants are hypersensitive to lowered Pkc1 activity. The corresponding 21 nonessential genes are closely related to CWI function: 14 behave in a chemical-genetic epistasis test as acting in the pathway, and 6 of these genes encode known components. Twelve of the 21 null mutants display elevated CWI reporter activity, consistent with the idea that the pathway is activated by and compensates for loss of the gene products. Four of the 21 mutants display low CWI reporter activity, consistent with the idea that the pathway is compromised in these mutants. One of the latter group of mutants lacks Ack1(Ydl203c), an uncharacterized SEL-1 domain-containing protein that we find modulates pathway activity. Epistasis analysis places Ack1 upstream of Pkc1 in the CWI pathway and dependent on the upstream Rho1 GTP exchange factors Rom2 and Tus1. Overall, the synthetic genetic network around PKC1 directly and efficiently identifies known and novel components of PKC signaling in yeast.  相似文献   

17.
In the yeast Saccharomyces cerevisiae, small GTPase Rho1 controls polarized actin distribution and cell wall expansion in response to many different environmental and intracellular stimuli. Its activity is essential for cell survival and adaptation under various stress conditions. A recent study identified the TOR complex 1 (TORC1), a central regulator in cell growth and metabolism, as a direct target of the small GTPase. This novel crosstalk extends the signaling network of Rho1 into many TORC1-dependent processes and sheds light on how yeast cells coordinate polarized spatial expansion with mass increase.  相似文献   

18.
The exact function and regulation of the small GTPase Rho5, a putative homolog of mammalian Rac1, in the yeast Saccharomyces cerevisiae have not yet been elucidated. In a genetic screen initially designed to identify novel regulators of cell wall integrity signaling, we identified the homologs of mammalian DOCK1 (Dck1) and ELMO (Lmo1) as upstream components which regulate Rho5. Deletion mutants in any of the encoding genes (DCK1, LMO1, RHO5) showed hyper‐resistance to cell wall stress agents, demonstrating a function in cell wall integrity signaling. Live‐cell fluorescence microscopy showed that Dck1, Lmo1 and Rho5 quickly relocate to mitochondria under oxidative stress and cell viability assays indicate a role of Dck1/Lmo1/Rho5 signaling in triggering cell death as a response to hydrogen peroxide treatment. A regulatory role in autophagy/mitophagy is suggested by the colocalization of Rho5 with autophagic markers and the decreased mitochondrial turnover observed in dck1, lmo1 and rho5 deletion mutants. Rho5 activation may thus serve as a central hub for the integration of different signaling pathways.  相似文献   

19.
20.
《Cellular signalling》2014,26(3):461-467
The mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1) pathway integrates signals generated by hormones and nutrients to control cell growth and metabolism. The activation state of mTORC1 is regulated by a variety of GTPases including Rheb and Rags. Recently, Rho1, the yeast ortholog of RhoA, was shown to interact directly with TORC1 and repress its activation state in yeast. Thus, the purpose of the present study was to test the hypothesis that the RhoA GTPase modulates signaling through mTORC1 in mammalian cells. In support of this hypothesis, exogenous overexpression of either wild type or constitutively active (ca)RhoA repressed mTORC1 signaling as assessed by phosphorylation of p70S6K1 (Thr389), 4E-BP1 (Ser65) and ULK1 (Ser757). Additionally, RhoA·GTP repressed phosphorylation of mTORC1-associated mTOR (Ser2481). The RhoA·GTP mediated repression of mTORC1 signaling occurred independent of insulin or leucine induced stimulation. In contrast to the action of Rho1 in yeast, no evidence was found to support a direct interaction of RhoA·GTP with mTORC1. Instead, expression of caRheb, but not caRags, was able to rescue the RhoA·GTP mediated repression of mTORC1 suggesting RhoA functions upstream of Rheb to repress mTORC1 activity. Consistent with this suggestion, RhoA·GTP repressed phosphorylation of TSC2 (Ser939), PRAS40 (Thr246), Akt (Ser473), and mTORC2-associated mTOR (Ser2481). Overall, the results support a model in which RhoA·GTP represses mTORC1 signaling upstream of Akt and mTORC2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号