首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The white rot fungus Pycnoporus sanguineus produced high amount of laccase in the basal liquid medium without induction. Laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 61.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme oxidized typical substrates of laccases including 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate), 2,6-dimethoxyphenol, and syringaldazine. The optimum pH and temperature for the purified laccase were 3.0 and 65°C, respectively. The enzyme was stable up to 40°C, and high laccase activity was maintained at pH 2.0–5.0. Sodium azide, l-cysteine, and dithiothreitol strongly inhibited the laccase activity. The purified enzyme efficiently decolorized Remazol Brilliant Blue R in the absence of added redox mediators. The high production of P. sanguineus laccase as well as its decolorization ability demonstrated its potential applications in dye decolorization.  相似文献   

2.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

3.
Aims: To screen and characterize a novel fungus with powerful and selective delignification capability on wheat straw. Methods and Results: A fungus capable of efficient delignification under solid‐state fermentation (SSF) conditions on wheat straw was screened. After 5 days of incubation, 13·07% of the lignin was removed by fungal degradation, and 7·62% of the holocellulose was lost. Furthermore, 46·53% of the alkali lignin was removed after 2 days of liquid fermentation. The fungus was identified as Fusarium concolor based on its morphology and an analysis of its 18S rDNA gene sequence. The molecular weight distribution of lignin was evaluated by gel permeation chromatography. Enzyme assay indicated that the fungus produced laccase, cellobiose dehydrogenase, xylanase and cellulase during the incubation period. Intracellular lignin peroxidase, manganese peroxidase and laccase were produced during liquid fermentation. Conclusions: We have successfully screened a fungus, F. concolor, which can efficiently degrade the lignin of wheat straw, with slight damage to the cellulose, after 5 days of SSF. Significance and Impact of the Study: The newly isolated strain could be used in pretreatment of lignocellulose materials prior to biopulping, bioconversion into fuel and substrates for the chemical industry.  相似文献   

4.
Morphological and biochemical analysis of the newly isolated white rot fungal (WRF-1) strain has ability to secrete laccase in the economical medium consisted of synthetic dyes, groundnut shell (GNS) and cyanobacterial biomass (algal bloom) under submerged shaking condition at pH 5.0 and 30 °C ± 2 °C temperature. WRF-1 strain was found to decolorize synthetic dyes efficiently at pH 5.0 and 30 °C ± 2 °C temperature. The laccase activity of strain was purified to homogeneity by chromatography with yield up to 70%. The molecular mass of laccase was found to be 70 kDa by SDS-PAGE and isoelectric point was 4.8. Biotransformation of the dyes was followed spectrophotometrically and dyes were found to decolorize completely after 6 days of fermentation. LC-MS studies were used to decipher the degradation profile of synthetic dyes by WRF-1. Indigo carmine gets degraded to isatin sulfonic acid and 4-amino-3-methylbenzenesulphonic acid whereas methyl orange degraded metabolites were identified as p-N,N′-dimethylamine phenyldiazine and p-hydroxybenzene sulfonic acid. Thus the study would give a road map for the production and application of laccase enzyme on a larger scale using low cost substrate.  相似文献   

5.
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml−1) and xylanase (135 U ml−1) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l−1). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.  相似文献   

6.
Laccase was produced by Coriolopsis rigida using barley bran as substrate in solid-state fermentation (SSF) and also by submerged fermentation (SmF). The best results were obtained in SSF with twice the amount of laccase production. Laccase could be produced from repeated batch cultures of SSF over 30 days. The laccase degraded several polycyclic aromatic hydrocarbons (PAHs) in vivo and in vitro. The addition of an effective mediator, 1-hydroxybenzotriazol (50 µM), during in vitro treatment increased the degradation rate.  相似文献   

7.
Mycelia Sterilia YY-5, an endophytic fungus isolated from Rhus Chinensis Mill, was used in SSF for laccase production using steam-exploded wheat straw (SEWS). The fermentation period of YY-5 in solid state fermentation (SSF) shortened to 4 days compared with 5 days of submerged liquid fermentation (SmF) and the maximum laccase activity was 678.1 IU g−1 substrate. The steam-explosion intensity (Log10 R 0) of SEWS had a significant effect on the growth of YY-5 and laccase activity, since SEWS could provide enough carbon source for YY-5 and inducers for laccase. The optimum SSF conditions using SEWS with Log10 R 0 = 3.597 as substrate were: inoculating with liquid inocula, keeping the solid-to-liquid ratio (S/L) for 1:4 and cultivating at 26°C. Under the optimum fermentation condition the laccase activity of YY-5 reached 849.5 ± 42.5 IU g−1 substrate. The enzyme composition analysis indicated that laccase was the dominant enzyme of YY-5. Assayed with SDS-PAGE and active PAGE electrophoresis, the molecular weight of YY-5 laccase was approximately 45 kDa.  相似文献   

8.
Summary The effect of additional nitrogen sources on lignocellulolytic enzyme production by four species of white-rot fungi (Funalia trogii IBB 146, Lentinus edodes IBB 363, Pleurotus dryinus IBB 903, and P. tuberregium IBB 624) in solid-state fermentation (SSF) of wheat straw and beech tree leaves was strain- and substrate-dependent. In general, the yields of hydrolytic enzymes and laccase increased by supplementation of medium with an additional nitrogen source. This stimulating effect of additional nitrogen on enzyme accumulation was due to higher biomass production. Only xylanase specific activity of P. dryinus IBB 903 and laccase specific activity of L. edodes IBB 363 increased significantly (by 66% and 73%, respectively) in SSF of wheat straw by addition of nitrogen source to the control medium. Additional nitrogen (20 mM) repressed manganese peroxidase (MnP) production by all fungi tested. The study of the nitrogen concentration effect revealed that 10 mM peptone concentration was optimal for cellulase and xylanase accumulation by P. dryinus IBB 903. While variation of the peptone concentration did not cause the change in MnP yield, elevated concentrations of this nutrient (20–40 mM) led to a 2–3-fold increase of P. dryinus IBB 903 laccase activity. About 10–20 mM concentration of NH4NO3 was optimal for cellulase and xylanase production by F. trogii IBB 146. However, neither the laccase nor the MnP yield was significantly changed by the additional nitrogen source.  相似文献   

9.
The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69–10.08% lignin in P. juliflora and 6.89–7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90–3.97 and 4.25–4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0–33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1–25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.  相似文献   

10.
The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignocellulosic by-products. Notable intergeneric and intrageneric differences were revealed with regard to the extent of hydrolase and oxidase activity. Several fungi produced laccase along with hydrolases in parallel with growth during the trophophase, showing that the synthesis of this enzyme is not connected with secondary metabolism. The lignocellulosic substrate type had the greatest impact on enzyme secretion. Some of the substrates significantly stimulated lignocellulolytic enzyme synthesis without supplementation of the culture medium with specific inducers. Exceptionally high carboxymethyl cellulase (CMCase, 122 U ml−1) and xylanase (195 U ml−1) activities were revealed in SF of mandarin peelings by Pseudotremella gibbosa IBB 22 and of residue after ethanol production (REP) by Fomes fomentarius IBB 38, respectively. The SSF of REP by T. pubescens IBB 11 ensured the highest level of laccase activity (24,690 U l−1), whereas the SSF of wheat bran and SF of mandarin peels provided the highest manganese peroxidase activity (570–620 U l−1) of Trichaptum biforme IBB 117. Moreover, the variation of lignocellulosic growth substrate provides an opportunity to obtain enzyme preparations containing different ratios of individual enzymes.  相似文献   

11.
New polyoxometalate–laccase integrated system (PLIDS) employing polyoxometalate [SiW11VVO40]5− and laccase of Trametes versicolor for the continuous delignification of eucalypt kraft pulp has been developed. Pulp was delignified in a batch reactor containing catalytic amounts of [SiW11VVO40]5− at about 90 °C under atmospheric pressure. Re-oxidation of reduced polyoxometalate (POM) with laccase was carried out at 45 °C in a separate aerated bioreactor coupled with an ultrafiltration tubular ceramic membrane. This allowed the separation of laccase from re-oxidized POM, which was supplied in turn continuously to the delignification reactor.Proposed PLIDS allowed sustainable pulp delignification with minimal degradation of polysaccharides. The implementation of PLIDS, instead the fist chlorine dioxide stage (D) in conventional DEDED bleaching sequence, showed almost 60% of chlorine dioxide savings with strength properties of the bleached pulp (90% ISO) similar to those obtained after the conventional bleaching.  相似文献   

12.
The ability of the ascomycete Morchella esculenta to degrade starch and upgrade nutritional value of cornmeal during solid-state fermentation (SSF) was studied. On the basal medium, α-amylase activity of M. esculenta reached its maximum value of 215 U g−1 of culture on day 20 after inoculation. Supplementation of glucose, yeast extract to the basal medium caused a significant increase in either the degradation rate of starch or the mycelial biomass as compared with control (P < 0.01). Through orthogonal experiments, the theoretical optimum culture medium for SSF of this fungus was the following: 100 g cornmeal, ground to 30-mesh powder, moistened with 67 ml of nutrient salt solution supplemented with 3 g yeast extract and 10 g glucose per liter. Under the optimum culture condition, the degradation rate of starch reached its maximum values of 74.8%; the starch content of the fermented product decreased from 64.5 to 23.5%.  相似文献   

13.
The dynamics of bacterial communities play an important role in solid-state fermentation (SSF). Poly-γ-glutamic acid (γ-PGA) was produced by Bacillus amyloliquefaciens C1 in SSF using dairy manure compost and monosodium glutamate production residuals as basic substrates. The production of γ-PGA reached a maximum of 0.6% after 20 days fermentation. Real-time polymerase chain reaction showed the amount of total bacteria reached 3.95 × 109 16S rDNA copies/g sample after 30 days, which was in good accordance with the 4.80 × 109 CFU/g obtained by plate counting. Denaturing gradient gel electrophoresis profile showed a reduction of microbial diversity during fermentation, while the inoculum, B. amyloliquefaciens C1, was detected as the dominant organism through the whole process. In the mesophilic phase of SSF, Proteobacteria was the dominant microbial, which was replaced by Firmicutes and Actinobacteria in the thermophilic phase. The molecular analysis of the bacterial diversity has significant potential for instructing the maturing process of SSF to produce γ-PGA at a large-scale level, which could be a benefit in the production of high quality and stable SSF products.  相似文献   

14.
The tannase production by Paecilomyces variotii was confirmed by high performance thin layer chromatography (HPTLC), and substrate specificity of the tannase was determined by zymogram analysis in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS–PAGE). A clear band of activity observed after electrophoresis of culture filtrate in non-denaturing gels indicated the production of extracellular tannase by P. varoitii. HPTLC analysis revealed that gallic acid was the enzymatic degradation product of tannic acid during the fermentation process. The optimum condition for tannase production was at 72 h of incubation in shaking condition and addition of 1.5% tannic acid, 1% glucose and 0.2% sodium nitrate at temperature of 35°C and pH of 5–7. The production of extracellular tannase from Paecilomyces variotii was investigated under optimized conditions in solid-state fermentation (SSF), submerged fermentation (SmF) and liquid surface fermentation (LSF) processes. The maximum extracellular tannase production was obtained within 60 h of incubation under SSF followed by SmF and LSF.  相似文献   

15.
Reactive dyes are one of the major sources of waste-water pollution. Efficient degradation of these dyes with enzymes produced from agricultural waste has attracted tremendous recent interests in both the scientific community and the general public. In this study, we took advantage of solid-state fermentation of four agro-byproducts (rape stem, wheat bran, peanut shell and rice hull) for producing laccase from the fungus Trametes sp. AH28-2. Higher laccase activities were obtained in multiple-substrates media than in single substrate media. The maximum yield of laccase (2.10 × 106 U/kg) was obtained in the medium containing 60% rape stem, 20% peanut shell and 20% wheat bran, without the supplement of any toxic inducers. Our results further demonstrated that the textile reactive dyes Levafix Blue CA and Cibacron Blue FN-R (1.0 g/l) were completely decolorized by the crude laccase (5.0 U/l) obtained within 15 h in the absence of any mediator. Therefore, the agro-byproducts could be re-utilized to produce laccase for the decolorization of textile reactive dyes. Q.Y. Sun and Y.Z. Hong contributed equally to the study.  相似文献   

16.
Myrothecium verrucaria NF-05 is a deuteromycete fungus capable of producing a white laccase. The optimal concentration of Cu2+ for laccase production by this strain is 0.2 mM (43.23 ± 1.16 U mL? 1). A comprehensive investigation of the induction demonstrated that NF-05 laccase production could be synergistically enhanced by various inducers, including aromatic phenols, amines and recalcitrant dyes, in the presence of 0.2 mM Cu2+. Sixteen phenols, fourteen amines and four dyes exhibited significant inductive effects on laccase production. The best inducer was 3, 3’-dimethylbenzidine, which increased laccase production to 258.1 ± 11.1 U mL? 1. These results suggest that M. verrucaria NF-05 is a promising industrial laccase producer. Based on the increased production, purified NF-05 laccase was used to decolorize dyes of various structural types in the presence of six redox mediators. Among the 26 tested dyes, the decolorization rate of six azo dyes, chromotrope 2R, orange G6, Congo red, Ponceau S, amaranth and reactive yellow 135 and two arylmethane dyes, fast green 3 and neutral red, were significantly increased by each of the six mediators. These results demonstrate the potential use of the NF-05 laccase for the decolorization of recalcitrant dyes in dye bleaching and effluent detoxification.  相似文献   

17.
An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4.5 for lignin removal. Laccase treatment was performed in the presence of a mediator N-hydroxybenzotriazole (HBT, 1.5% w/w), resulting into notably higher level of delignification of the pulp. Enzyme at 10 Ug−1 of pulp at 50°C, pH 6.0, for 2 h with a pulp consistency of 10% was found suitable for enabling maximum decrease in the kappa number. The kappa number and yellowness decreased by 14 and 4% whereas ISO brightness improved by 7%. The presence of a characteristic peak at 280 nm indicated the presence of lignin in the effluent during biobleaching. Analysis of FTIR spectra of residual lignin revealed characteristic modifications following enzymatic bleaching by laccase mediator system (LMS). Variations in morphology and crystallinity of pulp were evaluated by scanning electron microscopy and X-ray diffraction analysis.  相似文献   

18.
Bioremediation of textile dyes adsorbed on agricultural solid wastes under solid state fermentation (SSF) using rhizospheric plant growth promoting microorganisms pose an ecofriendly, economically feasible and promising treatment approach. The purpose of this study was to adsorb azo dye Disperse Red 73 (DR73) on sugarcane bagasse (SCB) and its further bioremediation using consortium-RARB under SSF. The particle size of SCB 0.002 mm showed maximum adsorption (65%) for DR73. Kinetics of adsorption of DR73 on milled SCB follows pseudo-second order kinetics. The individual cultures of Rhodobacter erythropholis MTCC 4688, Azotobacter vinelandii MTCC 1241, Rhizobium meliloti NCIM 2757 and Bacillus megaterium NCIM 2054 showed 44, 28, 50 and 61% decolorization of DR73 in 48 h respectively; while the consortium-RARB showed complete decolorization in 48 h. Optimum moisture content, temperature and pH for decolorization of DR73 was found to be 90%, 30 °C and 6 respectively. DR73 biodegradation analysis was carried out using HPTLC, FTIR and HPLC. Phytotoxicity and genotoxicity studies revealed detoxification of DR73. Tray bioreactor study for decolorization of adsorbed DR73 on SCB suggests its implementations at large scale. Use of plant growth promoting bacteria's consortium under SSF for bioremediation of adsorbed dyes gives a novel ecologically sustainable approach.  相似文献   

19.
Pleurotus sajor-caju PS2001 was screened in Petri dish plates to assess the dye-decolorizing ability of industrial textile dyes. P. sajor-caju PS2001 was also cultivated in solid-state fermentation containing sawdust of Pinus sp. and wheat bran to obtain the enzymatic extract, showing laccase and manganese-peroxidase activity, which was used to test the capacity to degrade the textile dyes. Additional tests of decolorization were performed in liquid cultures. Anthraquinone-type textile dyes proved to be substrates for the enzymatic system of P. sajor-caju PS2001. Cultures in Petri dish plates showed that the anthraquinone dye Reactive Blue 220 can act as a redox mediator for the enzymatic reactions involved in the decolorization process, and enables the azo dye degradation. Reactive Blue 220 and Acid Blue 280 were completely decolorized in 30 min and 60 min, respectively, during the tests with precipitated enzymatic extract, while the azo dyes showed resistance to degradation. Additionally, in submerged cultures with dyes, veratryl alcohol oxidases and lignin peroxidase activities were observed. These results suggest that the strain P. sajor-caju PS2001 has great potential for use in the bioremediation technology of recalcitrant pollutant such as textile effluents.  相似文献   

20.
Mycelium growth rates, biomass concentration (estimated as glucosamine content) and laccase and endoglucanase secretion were monitored during solid state fermentation (SSF) of wheat straw (WS), reed grass (RG) and bean stalk (BS) residues by Lentinula edodes strains 119, 121, and 122. In a first experiment, these strains were subjected to screening regarding their growth rates and biomass yield, where strain 121 proved to be the fastest colonizer. However, the greater biomass yield at the end of colonization was demonstrated by strain 122 on BS (465.93 mg g−1 d.w.). In a second experiment, growth characters, as well as endoglucanase and laccase production patterns of the selected strains 121 and 122 were monitored at three intervals i.e., at 33, 66, and 100% of substrate colonization. BS furnished the highest endoglucanase production for strain 121, while RG for strain 122. A strain and substrate-dependent behaviour of the enzyme secretion was detected, with strain 122 presenting maximal endoglucanase activity in all substrates at the initial (33%) and final (100%) stages of colonization (0.64–0.90 and 0.79–0.97 U g−1, respectively). However, in strain 121 the peak of endoglucanase production was detected in the early stages of colonization (at 33% on WS and at 66% on RG and BS). Laccase activity showed increased values (maxima on WS, 353.68 and 548.67 U g−1 by strains 121 and 122, respectively) at 66% of colonization. Correlation analysis of growth data demonstrated negative relations between growth rate and biomass yield and between laccase and endoglucanase activities on WS and RG substrates fermented by strain 122. Finally, possible relations of growth parameters with nutritional constituents of the substrates were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号