首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial distribution and annual cycle of abundance for thelate-stage copepodites of the calanoid copepod Calanus finmarchicusare described for the shelf and slope waters of the Middle AtlanticBight (MAB), a subregion of the US Northeast large marine ecosystem.Samples were collected with bongo nets from 1977 to 2001 onbroad-scale surveys of the region and from a continuous planktonrecorder (CPR) towed at 10-m depth along a route that traversedthe area. The copepod’s abundance in shelf waters increasedrapidly in early spring and reached maximum levels in May–June.It declined slowly thereafter, until a minor secondary pulseoccurred in late autumn, which was followed by the annual winterlow. Slope water abundance of C. finmarchicus peaked in Apriland was virtually absent there at 10-m depth from July throughthe following February. The two samplers, both portrayed similarhigh interannual abundance variability with no long-term trendevident for the 25-year period. Cluster analysis pinpointedthree shelf areas with similar abundance patterns, one of whichwas a region of high density located in the northeastern offshorewaters. Evidence is presented that indicates the source of thishigh abundance is likely from the populations that overwinterin deep water basins of the Gulf of Maine (GOM). The copepod’sinterannual abundance variability was found to be negativelycorrelated with water temperature and unrelated to fluctuationsof the North Atlantic oscillation (NAO) index.  相似文献   

2.
Kane  J 《Journal of plankton research》1999,21(6):1043-1064
The annual cycle of abundance and the monthly distributions of the copepod Centropages typicus are described for US Northeast Continental Shelf waters from samples collected on broadscale plankton surveys during 1977-87. High numbers of the copepod were captured throughout the region during the autumn months in weak south-north and onshore-offshore abundance gradients. The highest individual station densities were found near the mouth of the major estuaries and the heaviest broad-scale concentrations were usually located where bottom depth ranged from 20 to 39 m. Numbers declined throughout the ecosystem after winter arrived, less so in the southern half of the region where C.typicus abundance remained high year round in nearshore and midshelf waters between New York City and Chesapeake Bay. The copepod's abundance fell to much lower levels further north in the Georges Bank and Gulf of Maine subareas, and disappeared entirely from shelf waters in the northernmost offshore region until summer. Interannual abundance variability was substantial, but no long-term trend was detected. Analyses of samples collected from 1988 to 1996 on Georges Bank during early autumn indicate that abundance levels of C.typicus have been high here in the 1990s, completely recovered from low density values measured there in 1986 and 1987. Temperature and food availability were found to be the key factors that determine the copepod's distribution and annual abundance cycle. Mean abundance was high throughout the ecosystem where surface temperature was >9C and in regions where annual mean chlorophyll levels exceeded 1 mg m-3. The copepod's abundance appeared to be independent from variation in water column salinity.   相似文献   

3.
Zooplankton were collected by vertical tows with 102 µm mesh at ten stations in Boston Harbor, Massachusetts Bay and Cape Cod Bay in February, March, April, June, August, and October, 1992. This study was part of a larger monitoring program to assess the effects of a major sewage abatement project, and sampling periods were designed around periods of major phytoplankton events such as the winter-spring diatom bloom, the stratified summer flagellate period, and the autumn transition from stratified to mixed waters. There was considerable seasonal variation in total zooplankton abundance, with minimal values in April (1929–11631 animals m–3) during a massive bloom of Phaeocystis pouchetii, and maximum values (67 316–261075 animals m–3) in August. There were no consistent trends of total abundance where any particular station had greater or lesser abundance than others over the entire year. Zooplankton abundance was dominated by copepods (adults + copepodites) and copepod nauplii (30.4–100.0% of total zooplankton, mean= 83.2%). Despite the large seasonal variation in zooplankton and copepod abundance, the copepod assemblage was dominated throughout the entire year by the small copepod Oithona similis, followed by Paracalanus parvus. Other less-abundant copepods present year-round were Pseudocalanus newmani, Temora longicornis, Centropages hamatus, C. typicus, and Calanus finmarchicus. Two species of Acartia were present, primarily in low-salinity waters of Boston Harbor: A. hudsonica during cold periods, and A. tonsa in warm ones. Eurytemora herdmani was also a subdominant in Boston Harbor in October. The potential role of zooplankton grazing in phytoplankton dynamics and bloom cycles in these waters must be considered in view of the overwhelming numerical dominance of the zooplankton by Oithona similis which may feed primarily as a carnivore. Furthermore, it seems unlikely that eutrophication-induced alteration of phytoplankton assemblages could cause significant trophic domino effects, reducing abundances of Calanus finmarchicus that are forage of endangered right whales seasonally utilizing Cape Cod Bay because C. finmarchicus has long been known to be a relatively unselective grazer, and most importantly, it is a trivial component of total zooplankton or total copepod abundance in these waters.  相似文献   

4.
Copepod-bacteria interactions include permanent and transient epi- and endobiotic associations that may play roles in copepod health, transfer of elements in the food web, and biogeochemical cycling. Microbiomes of three temperate copepod species (Acartia longiremis, Centropages hamatus, and Calanus finmarchicus) from the Gulf of Maine were investigated during the early summer season using high throughput amplicon sequencing. The most prominent stable component of the microbiome included several taxa within Gammaproteobacteria, with Pseudoalteromonas spp. especially abundant across copepod species. These Gammaproteobacteria appear to be promoted by the copepod association, likely benefitting from nutrient enriched microenvironments on copepods, and forming a more important part of the copepod-associated community than Vibrio spp. during the cold-water season in this temperate system. Taxon-specific associations included an elevated relative abundance of Piscirickettsiaceae and Colwelliaceae on Calanus, and Marinomonas sp. in Centropages. The communities in full and voided gut copepods had distinct characteristics, thus the presence of a food-associated microbiome was evident, including higher abundance of Rhodobacteraceae and chloroplast sequences in the transient communities. The observed variability was partially explained by collection date that may be linked to factors such as variable time since molting, gender differences, and changes in food availability and type over the study period. While some taxon-specific and stable associations were identified, temporal changes in environmental conditions, including food type, appear to be key in controlling the composition of bacterial communities associated with copepods in this temperate coastal system during the early summer.  相似文献   

5.
This study addresses the regional variation of zooplankton inthe Great South Channel area in the southern Gulf of Maine betweenCape Cod, Massachusetts and Georges Bank. This is a region ofparticular interest because of the intense concentrations ofthe copepod Calanus finmarchicus in the spring, along with theco-occurrence of right whales that feed upon these copepod aggregations.Zooplankton in the Great South Channel were sampled with theMOCNESS plankton sampler during spring 1988 and 1989 as partof the SCOPEX (South Channel Ocean Productivity Experiment)project. Zooplankton variation was addressed through comparisonsof taxonomic composition and water column abundances among towswithin and between years, and between locations with and withoutright whales. Results showed that zooplankton community compositionwas highly similar between tows within each year average percentsimilarity index (PSI) for pairwise comparisons of tows = 82.2and 88.8% in 1988 and 1989, respectively] as well as betweenyears (mean PSI = 84.4). The copepods C.finmarchicus and Pseudocalanusspp. dominated the zooplankton in terms of total water columnabundance (>94% of all zooplankton), with C.finmarchicuscomprising an average of 84% of the copepods. Highest abundancesof these copepods (particularly the younger life stages) coincidedwith a region of low-salinity transport from the north. In addition,these copepods had higher abundances in 1989, which may be relatedto the fact that low-salinity transport was approximately twiceas large in 1989 as in 1988. Given the physical dynamics ofthe region, it is possible that developing copepod populationswere adverted into the Great South Channel from the northwesternGulf of Maine via the low-salinity plume. Each year, whaleswere located in areas of both high and low copepod abundance,and tended to concentrate near the leading edge of the low-salinityplume. In 1988, there were no significant differences in zooplanktonabundance between right whale areas and non-whale areas forany taxon. In 1989, whale areas had a greater proportion ofC.finmarchicus relative to other zooplankton in 1989, whichsuggests that whales preferred regions enriched in C.finmarchicus.  相似文献   

6.
The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts in abundance and distribution of many organisms have been observed, including the dominant copepod Calanus finmarchicus, which supports the grazing food web and thus many fish populations. At the same time, large‐scale declines have been observed in many piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine predictions from a niche model of C. finmarchicus with long‐term data on seabird breeding success to link trophic levels. The niche model shows that environmental suitability for C. finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the North Sea), and predicts that this decline is likely to spread northwards during the 21st century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding success of three common piscivorous seabird species [black‐legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)] was strongly positively correlated with local environmental suitability for C. finmarchicus, whereas this was not the case at a more northerly colony in west Norway. Large seabird populations seem only to occur where C. finmarchicus is abundant, and northward distributional shifts of common boreal seabirds are therefore expected over the coming decades. Whether or not population size can be maintained depends on the dispersal ability and inclination of these colonial breeders, and on the carrying capacity of more northerly areas in a warmer climate.  相似文献   

7.
Copepod community ingestion rates of Calanus finmarchicus, Temora longicornis, Acartia longiremis and Pseudocalanus spp., and egg production rates of C. finmarchicus and T. longicornis, were studied in relation to phytoplankton composition, abundance and biomass on the Faroe shelf during a one-year cycle. The phytoplankton community during winter was mainly composed of small flagellates and the copepods of Pseudocalanus spp. As the spring bloom progressed, diatoms increased in abundance and dominated the biomass throughout summer. C. finmarchicus increased in numbers in early spring, while T. longicornis and A. longiremis dominated the community during summer and autumn. While no response in ingestion rates was observed for A. longiremis and Pseudocalanus spp. with increasing diatom biomass, both ingestion rates and egg production of C. finmarchicus and T. longicornis, generally increased, showing a dependence upon diatoms for production. The daily ingestion for C. finmarchicus females was 7% and 22% of body biomass during the pre-bloom and bloom period, respectively, while for T. longicornis females it was 33% and 56% and for A. longiremis females 22% and 33%, respectively. C. finmarchicus accounted for more than 80% of the total copepod ingestion in May, but in mid- and late summer, T. longicornis and A. longiremis dominated, and represented 80–90% of the total copepod ingestion. The proportion of reproductively mature C. finmarchicus increased as the phytoplankton biomass increased. Most of the time there was good agreement between herbivorous ingestion rates and calculated carbon demand for the observed egg production. However, both species showed a peak in egg production prior to the phytoplankton spring-bloom. Handling editor: J. Padisak.  相似文献   

8.
9.
We challenged four species of copepod grazers (Acartia hudsonica, Centropages hamatus, Eurytemora herdmani, Calanus finmarchicus) with natural water samples containing non-toxic algae mixed with one of three clones of Alexandrium spp.—A. tamarense GTCN16 (non-toxic), A. fundyense GTCA28 (moderate toxicity), and A. fundyense BC1 (higher toxicity), each at relatively high (105 cells L−1) and low (104 cells L−1) concentrations. Within any one copepod species, significant differences existed in copepod clearance rates and total food ingested between high and low Alexandrium cell concentrations, and between levels of toxicity, but feeding response did not follow a predictable relationship proportional to toxin levels—rather, the presence or absence of toxin was more important than the level of toxicity. C. finmarchicus behaved differently from the smaller coastal copepods, showing less selectivity and greater concentration dependence. In low Alexandrium concentration treatments, copepod clearance rates on Alexandrium were usually higher, and electivity indices for Alexandrium less negative (indicating less avoidance), compared to high concentration treatments. In high toxicity (BC1) treatments of all copepod species (except C. finmarchicus), total food consumption was consistently less at high Alexandrium concentrations compared to low concentrations, suggesting that high toxicity and concentration suppress overall feeding, while in non-toxic (GTCN 16) treatments total consumption was always higher at high Alexandrium concentrations. Copepod grazers do not follow predictable feeding rules throughout a continuum of conditions, but become more predictable at extremes of concentration and toxicity of prey, consistent with the conclusion that both factors are important. Results support the hypothesis that grazer deterrence imparted by toxicity is only effective at high cell concentrations, but even then will not protect against all grazers.  相似文献   

10.
Centromeres are composed of long arrays of satellite repeats in most multicellular eukaryotes investigated to date. The satellite repeat–based centromeres are believed to have evolved from “neocentromeres” that originally contained only single- or low-copy sequences. However, the emergence and evolution of the satellite repeats in centromeres has been elusive. Potato (Solanum tuberosum) provides a model system for studying centromere evolution because each of its 12 centromeres contains distinct DNA sequences, allowing comparative analysis of homoeologous centromeres from related species. We conducted genome-wide analysis of the centromeric sequences in Solanum verrucosum, a wild species closely related to potato. Unambiguous homoeologous centromeric sequences were detected in only a single centromere (Cen9) between the two species. Four centromeres (Cen2, Cen4, Cen7, and Cen10) in S. verrucosum contained distinct satellite repeats that were amplified from retrotransposon-related sequences. Strikingly, the same four centromeres in potato contain either different satellite repeats (Cen2 and Cen7) or exclusively single- and low-copy sequences (Cen4 and Cen10). Our sequence comparison of five homoeologous centromeres in two Solanum species reveals rapid divergence of centromeric sequences among closely related species. We propose that centromeric satellite repeats undergo boom-bust cycles before a favorable repeat is fixed in the population.  相似文献   

11.
Food selectivity and grazing impact by Acartia bifilosa, Temora longicornis and Centropages typicus on Dinophysis spp. plankton assemblages were experimentally investigated in the Baltic Sea. Toxin analyses were carried out on phyto- and zooplankton-dominated size fractions from field-collected samples to assess if toxins produced by Dinophysis spp. would end up in the zooplankton. All copepod species fed actively on toxic Dinophysis spp. (Dinophysis acuta and Dinophysis norvegica). Despite the non-selective feeding behaviour by T. longicornis and C. typicus, selectivity coefficients on D. acuta progressively decreased as food availability increased. Similar response was not observed for A. bifilosa, which displayed an even less selective behaviour. A. bifilosa had no significant negative effect on the net growth of D. norvegica at the lowest food concentration offered, whereas T. longicornis and C. typicus had significant negative effects on the net growth of D. acuta at low concentrations, similar to those observed in situ. Both species could potentially contribute as a substantial loss factor for Dinophysis spp. provided they are abundant at the onset of the blooms. The estimated grazing impact by the copepod populations was only considerable when C. typicus abundance was high and D. acuta population in sharp decline. Our results suggest that when high abundance of grazers and poor growth condition of prey populations prevail, grazing impact by copepods can contribute considerably to prevent Dinophysis spp. populations to grow or to cause the populations to decline. Okadaic acid was detected in the zooplankton size fraction at one occasion, but the concentration was far lower than the one expected from the ingested toxins. Thus, even if copepods may act as vectors of DSP-toxins to higher trophic levels, the amount of these toxins transported in the food web by copepods seems limited.  相似文献   

12.
The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10 mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlying microzooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages.These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton—zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvae.  相似文献   

13.
Effective conservation and management necessitate an understanding of the ecological mechanisms that shape species life histories in order to predict how variability in natural and anthropogenic impacts will alter growth rates, recruitment, and survival. Among these mechanisms, the interaction between parturition timing and prey availability frequently influences offspring success, particularly when postnatal care is absent. Here, we assess how parturition timing and nursery conditions, including prey abundance and environmental conditions, influence the growth and potential survival of blacktip sharks (Carcharhinus limbatus) in western Gulf of Mexico (GOM) estuaries over their first year. Catch data from long‐term gillnet monitoring allowed for clear delineation of cohorts based on size frequency distribution plots, and showed that late parturition cohorts born in estuaries with fewer prey resources exhibited more rapid growth than early parturition cohorts that experienced more abundant prey. Compensatory behaviors that promoted accelerated growth led to reduced second year residency, likely due to reduced survival resultant from greater risk taking and potentially due to reduced site fidelity attributed to larger body size. Water temperatures influenced blacktip growth rates through physiological increases in metabolism and potential premigratory foraging cues associated with cooling temperatures. Gradual warming of the GOM (0.03°C year−1) was also correlated with earlier parturition across the study period (1982–2017), similar to other migratory species. Considering current trends in climate and associated phenological shifts in many animals, testing hypotheses assessing compensatory growth‐risk trade‐offs is important moving forward to predict changes in life histories and associated recruitment in concert with current and future conservation actions, like wildlife management.  相似文献   

14.
A library of expressed sequence tags (ESTs) was constructed by the use of suppression subtractive hybridization polymerase chain reaction (SSH PCR) technique from the marine copepod Calanus finmarchicus. Samples used were from controls (seawater, 10 °C) and exposed (sublethal mixture) individuals. The sublethal exposure regime consisted of a mixture of mono ethanol amine (MEA), water-soluble fractions of oil (WSFs), copper (Cu) and elevated temperature (17 °C). The resulting 189 unique ESTs consisted of 127 putatively up-regulated genes and 54 putatively down-regulated genes. Annotation analyses revealed altered expression of a wide variety of genes, among these putative heat shock protein 90 (HSP-90), antioxidants (thioredoxin reductase, glutathione peroxidase) and cytochrome P450 enzymes. In addition, sequences showing high similarity to enzymes involved in fatty acid metabolism, energy metabolism and amine handling were found further confirming the effects of the exposure. The annotated sequences are discussed in relation to the present exposure as well as known physiological mechanisms known in C. finmarchicus and related copepod species. The sequenced ESTs from our C. finmarchicus library will provide an excellent tool for future studies on this species, both from a toxicogenomic and systems biology point of view.  相似文献   

15.
The marine algal biotoxin, domoic acid (DA), is produced by certain members of the diatom genus Pseudo-nitzschia. This neurotoxin has been responsible for several mass mortality events involving marine birds and mammals. In all cases, the toxin was transferred from its algal producers through marine food webs by one or more intermediate vectors. The ability of some copepod taxa to serve as vectors for DA has been demonstrated; however, the role played in DA trophic transfer by Calanus finmarchicus, which often dominates N. Atlantic zooplankton assemblages and is a primary dietary component of the highly endangered N. Atlantic right whale (Eubalaena glacialis), has been uncertain. In the present study, we examined the ability of C. finmarchicus to consume DA-producing algae and retain the toxin. Results of grazing and toxin accumulation/depuration experiments showed that C. finmarchicus consumed DA-producing Pseudo-nitzschia multiseries regardless of the presence or absence of morphologically similar, but non-toxic, P. pungens, across initial cell concentrations ranging from 1000-4000 cells mL− 1. Furthermore, C. finmarchicus did not appear to preferentially consume or avoid either Pseudo-nitzschia species tested. After ingestion of P. multiseries, copepods accumulated DA and retained it for up to 48 h post-removal of the toxin source. These findings provide evidence for the potential of C. finmarchicus to facilitate DA trophic transfer in marine food webs where toxic Pseudo-nitzschia is present.  相似文献   

16.
Meganyctiphanes norvegica (M. Sars) will feed upon the centric diatom Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle but cannot fulfil its energy requirement for metabolism on this food. Its daily metabolic requirement can be exceeded when the euphausiid feeds upon the copepods Calanus finmarchicus Gunner or Centropages typicus Krøeyer, but not when feeding upon the smaller copepods Pseudocalanus spp. or Acartia spp. When feeding upon a natural copepod assemblage Meganyctiphanes norvegica requires high concentrations of copepods to achieve its metabolic requirements, suggesting that the euphausiid may exploit vertically patchy concentrations of prey. Short-term predation rates on Pseudocalanus spp. were also used to estimate feeding rates. Feeding in Meganyctiphanes norvegica appears to be adapted to a spatially variable food supply and rapid exploitation of food sources concentrated into patches or layers. The filter area of the feeding basket of M. norvegica is proportionally smaller than the filter area of Euphausia superba Dana, but has the same allometric length exponent. The filter area probably reflects the difference between the primarily carnivorous diet of Meganyctiphanes norvegica and herbivorous diet of Euphausia superba.  相似文献   

17.
18.
Recent observations confirm the rising temperatures of Atlantic waters transported into the Arctic Ocean via the West Spitsbergen Current (WSC). We studied the overall abundance and population structure of the North Atlantic keystone zooplankton copepod Calanus finmarchicus, which is the main prey for pelagic fish and some seabirds, in relation to selected environmental variables in this area between 2001 and 2011, when warming in the Arctic and Subarctic was particularly pronounced. Sampling within a 3‐week time window each summer demonstrated that trends in the overall abundance of C. finmarchicus varied between years, with the highest values in “extreme” years, due to high numbers of nauplii and early copepodite stages in colder years (2001, 2004, 2010), and contrary to that, the fifth copepodite stage (C5) peaking in warm years (2006, 2007, 2009). The most influential environmental variable driving C. finmarchicus life cycle was temperature, which promoted an increased C5 abundance when the temperature was above 6°C, indicating earlier spawning and/or accelerated development, and possibly leading to their development to adults later in the summer and spawning for the second time, given adequate food supply. Based on the presented high interannual and spatial variability, we hypothesize that under a warmer climate, C. finmarchicus may annually produce two generations in the southern part of the WSC, what in turn could lead to food web reorganization of important top predators, such as little auks, and induce northward migrations of fish, especially the Norwegian herring.  相似文献   

19.
The copepod Calanus finmarchicus is the major contributor to zooplankton biomass in the North Atlantic and Norwegian Sea, but recent studies have shown a 70% decrease in abundance as well as a northward shift in the species’ range. Insights into dispersal capabilities gained from population genetic studies will be crucial in predicting the response of C. finmarchicus communities to climate change and, consequently, we have developed a set of expressed sequence tag‐derived microsatellite markers to allow fine‐scale elucidation of population structuring and dispersal. Ten polymorphic markers displayed between two and 19 alleles, with levels of expected heterozygosity ranging from 0.044 to 0.924.  相似文献   

20.
To assess the role that vision plays in the ability of the North Atlantic right whale (Eubalaena glacialis) to detect its primary prey species, the calanoid copepod Calanus finmarchicus, we have compared the absorbance spectrum of the E. glacialis rod visual pigment, the transmittance spectra of C. finmarchicus carotenoid pigments, as well as the downwelling irradiance and horizontal radiance spectra collected during springtime at three locations in the western Gulf of Maine. The E. glacialis rod visual pigment absorbs light maximally at 493 nm, while microspectrophotometric measurements of the C. finmarchicus carotenoid pigments reveal transmission spectra with minima matching very well with the E. glacialis rod visual pigment absorbance spectra maximum. Springtime spectral downwelling irradiance and horizontal radiance values from the surface waters of Cape Cod Bay and at all depths in Great South Channel overlap the E. glacialis rod absorbance spectrum, allowing C. finmarchicus to appear as a high‐contrast dark silhouette against a bright background spacelight, thus facilitating visually guided contrast foraging. In contrast, spectral downwelling irradiance and horizontal radiance at depth in Cape Cod Bay, and all depths in Wilkinson Basin, do not overlap the E. glacialis rod absorbance spectrum, providing little if any useful light for contrast vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号