首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.

  相似文献   

2.
Domains within the multienzyme polyketide synthases are linked by noncatalytic sequences of variable length and unknown function. Recently, the crystal structure was reported of a portion of the linker between the acyltransferase (AT) and ketoreductase (KR) domains from module 1 of the erythromycin synthase (6-deoxyerythronolide B synthase), as a pseudodimer with the adjacent ketoreductase (KR). On the basis of this structure, the homologous linker region between the dehydratase (DH) and enoyl reductase (ER) domains in fully reducing modules has been proposed to occupy a position on the periphery of the polyketide synthases complex, as in porcine fatty acid synthase. We report here the expression and characterization of the same region of the 6-deoxyerythronolide B synthase module 1 AT-KR linker, without the adjacent KR domain (termed DeltaN AT1-KR1), as well as the corresponding section of the DH-ER linker. The linkers fold autonomously and are well structured. However, analytical gel filtration and ultracentrifugation analysis independently show that DeltaN AT1-KR1 is homodimeric in solution; site-directed mutagenesis further demonstrates that linker self-association is compatible with the formation of a linker-KR pseudodimer. Our data also strongly indicate that the DH-ER linker associates with the upstream DH domain. Both of these findings are incompatible with the proposed model for polyketide synthase architecture, suggesting that it is premature to allocate the linker regions to a position in the multienzymes based on the solved structure of animal fatty acid synthase.  相似文献   

3.
Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria.  相似文献   

4.
Sequence analysis of ketosynthase domain amplicons from Streptomyces bicolor NBRC 12746T revealed the presence of previously unreported type I polyketide synthases (PKS-I) genes. The clustering of these genes with the reference PKS-1 sequences suggested the possibility to produce a polyene compound similar to pimaricin. Thus, the cultured sample from NBRC 12746T was analyzed for the production of polyene compounds. The strain produced an antifungal compound which displayed the UV absorption spectrum of tetraene macrolides. The structure determination based on the spectroscopic analysis of the purified compound resulted in the identification of a novel pimaricin analog JBIR-13 (1). This study therefore strongly suggested that a careful analysis of PKS-I genes can provide valuable information in the search of novel bioactive compounds within a class predicted from phylogenetic analysis. H. Komaki and M. Izumikawa contributed equally to this work.  相似文献   

5.
Kim JA  Hong SG  Cheong YH  Koh YJ  Hur JS 《Mycologia》2012,104(2):362-370
Lichens produce unique polyketide secondary metabolites including depsides, depsidones, dibenzofurans and depsones. The biosynthesis of these compounds is governed by polyketide synthase (PKS), but the mechanism via which they are produced has remained unclear until now. We reported the 6-methylsalicylic acid synthase (6-MSAS) type of PKS gene, which is a member of the fungal-reducing PKSs. A cultured mycobiont of Cladonia metacorallifera was employed in the isolation and characterization of a polyketide synthase gene (CmPKS1). The complete sequence information for CmPKS1 was acquired via the screening of a Fosmid genomic library with a 456 bp fragment corresponding to part of the acyl transferase (AT) domain as a probe. CmPKS1 contains β-ketoacyl synthase (KS), AT, dehydratase (DH), ketoreductase (KR) and phosphopantetheine attachment site (PP) domains.: The domain organization of CmPKS1 (KS-AT-DH-KR-PP) is a typical 6-MSAS-type PKS, and the results of phylogenetic analysis showed that CmPKS1 grouped with other fungal-reducing PKSs. Quantitative real time PCR analyses showed that CmPKS1 was expressed preferentially in the early growth stage of the axenically cultured mycobiont. Furthermore CmPKS1 expression was found to be dependent on the carbon sources and concentrations in the medium.  相似文献   

6.
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.  相似文献   

7.
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7H10O3, and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.  相似文献   

8.
The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with β-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.  相似文献   

9.
杨瑞先  张拦  彭彪彪  蒙城功 《微生物学报》2017,57(10):1567-1582
【目的】研究药用植物芍药(Paeonia lactiflora Pall.)内生真菌的种群多样性,同时对其可能存在的聚酮合酶(Polyketide synthase,PKS)和非核糖体多肽合成酶(Non-ribosomal peptide synthetase,NRPS)基因多样性进行评估,预测芍药内生真菌产生活性次生代谢产物的潜力。【方法】采用组织分离法获得芍药根部内生真菌菌株,结合形态学特征和ITS序列分析,进行鉴定;利用兼并性引物对内生真菌中存在的聚酮合酶(PKS)基因和非核糖体多肽合成酶(NRPS)基因进行PCR扩增及序列测定分析,构建系统发育树,明确芍药内真菌PKS基因序列和NRPS基因序列的系统进化地位。【结果】从芍药组织块中共分离得到105株内生分离物,去重复后获得52株内生真菌,菌株ITS基因序列信息显示,52株芍药内生真菌隶属于7目、13科、15属,其中小球腔菌属(Leptosphaeria)、土赤壳属(Ilyonectria)和镰孢属(Fusarium)为优势种群;从52株内生真菌中筛选获得13株含PKS基因片段的菌株,8株含NRPS基因片段的菌株,部分菌株功能基因的氨基酸序列与Gen Bank中已知化合物的合成序列具有一定的同源性,预示芍药根部内生真菌具有合成丰富多样的次生代谢产物的潜力。【结论】药用植物芍药根部具有丰富的内生真菌资源,且具有产生活性次生代谢产物的潜力,值得进一步开发研究和应用。  相似文献   

10.
Liou GF  Lau J  Cane DE  Khosla C 《Biochemistry》2003,42(1):200-207
The acyltransferase (AT) domains of modular polyketide synthases (PKSs) are the primary determinants of building block specificity in polyketide biosynthesis and are therefore attractive targets for protein engineering. Thus far, investigations into the fundamental biochemical properties of AT domains have been hampered by the inability to produce these enzymes as self-standing polypeptides. Here we describe an alternative, generally applicable strategy for overexpression and analysis of AT domains from modular PKSs as truncated didomain proteins (approximately 60 kDa). Recently, we reported the expression and reconstitution of the loading didomain of 6-deoxyerythronolide B synthase (Lau, J., Cane, D. E., and Khosla, C. (2000) Biochemistry 39, 10514-20). By replacing the AT domain of this protein with a methylmalonyl-CoA specific AT domain from module 6 of the 6-deoxyerythronolide B synthase, or alternatively a malonyl-CoA specific AT domain from module 2 of the rapamycin synthase, each of these extender unit AT domains could be overproduced and purified to homogeneity. Using acyl-CoA substrates as acyl group donors and N-acetylcysteamine as the thiol acceptor, we devised a steady-state kinetic assay to probe the properties of these three didomain proteins and selected mutants. Propionyl-CoA was the preferred substrate of the loading didomain, although acetyl- and butyryl-CoA were also accepted with approximately 40-fold-lower specificity. In contrast to the relatively relaxed specificity of the loading AT domain, the methylmalonyl- and malonyl-specific AT domains had high specificity (>1000-fold) toward their natural substrates. The acyl transfer reaction was inhibited by coenzyme A (CoASH) with both a competitive and a noncompetitive component. Use of an exogenous holo-acyl carrier protein (ACP) as an acceptor thiol did not increase the rate of acyl transfer relative to the reaction involving N-acetylcysteamine, suggesting that either the on-rate of the acyl group is rate-limiting or that the apo-ACP component of the didomain protein precludes effective docking of a second ACP onto the AT active site. Mutation of Trp-222 in the loading AT domain to an Arg residue that is universally conserved in all extender unit AT domains failed to enable the loading AT domain to accept methylmalonyl-CoA as an alternative substrate. In contrast, mutation of the equivalent Arg residue in an extender AT domain resulted in a protein with no activity. Together, these results provide a foundation for future structural and mechanistic investigations into the properties of AT domains of modular PKSs.  相似文献   

11.
《Gene》1998,216(2):255-265
Five clustered polyketide synthase (PKS) genes, rifArifE, involved in rifamycin (Rf) biosynthesis in Amycolatopsis mediterranei S699 have been cloned and sequenced (August, P.R. et al., 1998. Chem. Biol. 5, 69–79). The five multifunctional polypeptides constitute a type I modular PKS that contains ten modules, each responsible for a specific round of polyketide chain elongation. Sequence comparisons of the Rf PKS proteins with other prokaryotic modular PKSs elucidated the regions that have an important role in enzyme activity and specificity. The β-ketoacyl:acyl carrier protein synthase (KS) domains show the highest degree of similarity between themselves (86–90%) and to other PKSs (78–85%) among all the constituent domains. Both malonyl-coenzyme A (MCoA) and methylmalonyl-coenzyme A (mMCoA) are substrates for chain elongation steps carried out by the Rf PKS. Since acyltransferase (AT) domains of modular PKSs can distinguish between these two substrates, comparison of the sequence of all ten AT domains of the Rf PKS with those found in the erythromycin (Er) (Donadio, S. and Katz, L., 1992. Gene 111, 51–60) and rapamycin (Rp) (Haydock, S. et al., 1995. FEBS Lett. 374, 246–248) PKSs revealed that the AT domains in module 2 of RifA and module 9 of RifE are specific for MCoA, whereas the other eight modules specify mMCoA. Dehydration of the β-hydroxyacylthioester intermediates should occur during the reactions catalysed by module 4 of RifB and modules 9 and 10 of RifE, yet only the active site region of module 4 conforms closely to the dehydratase (DH) motifs in the Er and Rp PKSs. The DH domains of modules 9 and 10 diverge significantly from the consensus sequence defined by the Er and Rp PKSs, except for the active site His residues. Deletions in the DH active sites of module 1 in RifA and module 5 in RifB and in the N- and C-terminal regions of module 8 of RifD should inactivate these domains, and module 2 of RifA lacks a DH domain, all of which are consistent with the proposed biosynthesis of Rf. In contrast, module 6 of RifB and module 7 of RifC appear to contain intact DH domains even though DH activity is not apparently required in these modules. Module 2 of RifA lacks a β-ketoacyl:acyl carrier protein reductase (KR) domain and the one in module 3 has an apparently inactive NADPH binding motif, similar to one found in the Er PKS, while the other eight KR domains of the Rf PKS should be functional. These observations are consistent with biosynthetic predictions. All the acyl carrier protein (ACP) domains, while clearly functional, nevertheless have active site signature sequences distinctive from those of the Er and Rp PKSs. Module 2 of RifA has only the core domains (KS, AT and ACP). The starter unit ligase (SUL) and ACP domains present in the N-terminus of RifA direct the selection and loading of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA), onto the PKS. AHBA is made by the products of several other genes in the Rf cluster through a variant of the shikimate pathway (August, P.R. et al., inter alia). RifF, produced by the gene immediately downstream of rifE, is thought to catalyse the intramolecular cyclization of the PKS product, thereby forming the ansamacrolide precursor of Rf B.  相似文献   

12.
Unraveling polyketide synthesis in members of the genus Aspergillus   总被引:1,自引:0,他引:1  
Aspergillus species have the ability to produce a wide range of secondary metabolites including polyketides that are generated by multi-domain polyketide synthases (PKSs). Recent biochemical studies using dissected single or multiple domains from PKSs have provided deep insight into how these PKSs control the structural outcome. Moreover, the recent genome sequencing of several species has greatly facilitated the understanding of the biosynthetic pathways for these secondary metabolites. In this review, we will highlight the current knowledge regarding polyketide biosynthesis in Aspergillus based on the domain architecture of non-reducing, highly reducing, and partially reducing PKSs, and PKS-non-ribosomal peptide synthetases.  相似文献   

13.

Thraustochytrium sp. 26185, a unicellular marine protist, synthesizes docosahexaenoic acid, an omega-3 very long chain polyunsaturated fatty acid (VLC-PUFAs), by a polyunsaturated fatty acid (PUFA) synthase comprising three large subunits with multiple catalytic dehydratase (DH) domains critical for introducing double bonds at the specific position of fatty acids. To investigate functions of these DH domains, one DH domain from subunit-A and two DH domains from subunit-C of the PUFA synthase were dissected and expressed as stand-alone enzymes in Escherichia coli. The results showed that all these DH domains could complement the defective phenotype of a E. coli FabA temperature sensitive mutant, despite they have only modest sequence similarity with FabA, indicating they can function as 3-hydroxyacyl-ACP dehydratase for the biosynthesis of unsaturated fatty acids in E. coli. Site-directed mutagenesis analysis confirmed the authenticity of active site residues in these domains. In addition, overexpression of the three domains in a wild type E. coli strain resulted in the substantial alteration of fatty acid profiles including productions and ratio of unsaturated to saturated fatty acids. A combination of evidences from sequence comparison, functional expression, and mutagenesis analysis suggest that the DH domain from subunit-A is similar to DH domains from polyketide synthases, while the DH domains from subunit-C are more comparable to E. coli FabA in catalytic functions. Successful complementation and functional expression of the embedded DH domains from the PUFA synthase in E. coli is an important step towards for elucidating the molecular mechanism in the biosynthesis of VLC-PUFAs in Thraustochytrium.

  相似文献   

14.
15.
The structure of the ketoreductase (KR) from the first module of the erythromycin synthase with NADPH bound was solved to 1.79 A resolution. The 51 kDa domain has two subdomains, each similar to a short-chain dehydrogenase/reductase (SDR) monomer. One subdomain has a truncated Rossmann fold and serves a purely structural role stabilizing the other subdomain, which catalyzes the reduction of the beta-carbonyl of a polyketide and possibly the epimerization of an alpha-substituent. The structure enabled us to define the domain boundaries of KR, the dehydratase (DH), and the enoylreductase (ER). It also constrains the three-dimensional organization of these domains within a module, revealing that KR does not make dimeric contacts across the 2-fold axis of the module. The quaternary structure elucidates how substrates are shuttled between the active sites of polyketide synthases (PKSs), as well as related fatty acid synthases (FASs), and suggests how domains can be swapped to make hybrid synthases that produce novel polyketides.  相似文献   

16.
Ames BD  Lee MY  Moody C  Zhang W  Tang Y  Tsai SC 《Biochemistry》2011,50(39):8392-8406
Aromatic polyketides comprise an important class of natural products that possess a wide range of biological activities. The cyclization of the polyketide chain is a critical control point in the biosynthesis of aromatic polyketides. The aromatase/cyclases (ARO/CYCs) are an important component of the type II polyketide synthase (PKS) and help fold the polyketide for regiospecific cyclizations of the first ring and/or aromatization, promoting two commonly observed first-ring cyclization patterns for the bacterial type II PKSs: C7-C12 and C9-C14. We had previously reported the crystal structure and enzymological analyses of the TcmN ARO/CYC, which promotes C9-C14 first-ring cyclization. However, how C7-C12 first-ring cyclization is controlled remains unresolved. In this work, we present the 2.4 ? crystal structure of ZhuI, a C7-C12-specific first-ring ARO/CYC from the type II PKS pathway responsible for the production of the R1128 polyketides. Though ZhuI possesses a helix-grip fold shared by TcmN ARO/CYC, there are substantial differences in overall structure and pocket residue composition that may be important for directing C7-C12 (rather than C9-C14) cyclization. Docking studies and site-directed mutagenesis coupled to an in vitro activity assay demonstrate that ZhuI pocket residues R66, H109, and D146 are important for enzyme function. The ZhuI crystal structure helps visualize the structure and putative dehydratase function of the didomain ARO/CYCs from KR-containing type II PKSs. The sequence-structure-function analysis described for ZhuI elucidates the molecular mechanisms that control C7-C12 first-ring polyketide cyclization and builds a foundation for future endeavors into directing cyclization patterns for engineered biosynthesis of aromatic polyketides.  相似文献   

17.
The polyene antibiotics, including nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very valuable antifungal polyketide compounds, and they are typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain genes potentially encoding polyene biosynthesis. Here, sequence information of an approximately 125.7-kb contiguous DNA region in five overlapping cosmids isolated from the P. autotrophica KCTC9441 genomic library revealed a total of 23 open reading frames, which are presumably involved in the biosynthesis of a nystatin-like compound tentatively named NPP. The deduced roles for six multi-modular polyketide synthase (PKS) catalytic domains were found to be highly homologous to those of previously identified nystatin biosynthetic genes. Low NPP productivity suggests that the functionally clustered NPP biosynthetic pathway genes are tightly regulated in P. autotrophica. Disruption of a NPP PKS gene completely abolished both NPP biosynthesis and antifungal activity against Candida albicans, suggesting that polyene-specific genome screening may constitute an efficient method for isolation of potentially valuable previously identified polyene genes and compounds from various rare actinomycetes widespread in nature.  相似文献   

18.
19.
Abstract

Over a decade ago, the analysis of the complete sequence of the genome of the human pathogen Mycobacterium tuberculosis revealed an unexpectedly high number of open reading frames encoding proteins with homology to polyketide synthases (PKSs). PKSs form a large family of fascinating multifunctional enzymes best known for their involvement in the biosynthesis of hundreds of polyketide natural products with diverse biological activities. The surprising polyketide biosynthesis capacity of M. tuberculosis has been investigated since its initial inference from genome analysis. This investigation has been based on the genes found in M. tuberculosis or their orthologs found in other Mycobacterium species. Today, the majority of the PKS-encoding genes of M. tuberculosis have been linked to specific biosynthetic pathways required for the production of unique lipids or glycolipid conjugates that are critical for virulence and/or components of the extraordinarily complex mycobacterial cell envelope. This review provides a synopsis of the most relevant studies in the field and an overview of our current understanding of the involvement of PKSs and several other polyketide production pathway-associated proteins in critical biosynthetic pathways of M. tuberculosis and other mycobacteria. In addition, the most relevant studies on PKS-containing biosynthetic pathways leading to production of metabolites from mycobacteria other than M. tuberculosis are reviewed.  相似文献   

20.
Wu N  Cane DE  Khosla C 《Biochemistry》2002,41(15):5056-5066
6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase (PKS) responsible for the biosynthesis of 6-dEB, the aglycon core of the antibiotic erythromycin. The biosynthesis of 6-dEB proceeds in an assembly-line fashion through the six modules of DEBS, each of which catalyzes a dedicated set of reactions, such that the structure of the final product is determined by the arrangement of modules along the assembly line. This transparent relationship between protein sequence and enzyme function is common to all modular PKSs and makes these enzymes an attractive scaffold for protein engineering through module swapping. One of the fundamental issues relating to module swapping that still needs to be addressed is the mechanism by which intermediates are channeled from one module to the next. While it has been previously shown that short linker regions at the N- and C-termini of adjacent polypeptides play an important role in mediating intermodular transfer, the contributions of other protein-protein interactions have not yet been probed. Here, we investigate the roles of the linker interactions as well as the interactions between the donor acyl carrier protein (ACP) domain and the downstream ketosynthase (KS) domain in various contexts. Linker interactions and ACP-KS interactions make relatively equal contributions at the module 2-module 3 and the module 4-module 5 interfaces in DEBS. In contrast, modules 2 and 6 are more tolerant toward substrates presented by nonnatural ACP domains. This tolerance was exploited for engineering hybrid PKS-PKS and PKS-NRPS (nonribosomal peptide synthetase) junctions and suggests fundamental ground rules for engineering novel chimeric PKSs in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号