首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain.  相似文献   

2.
3.
目前,绝大多数酿酒酵母(Saccharomyces cerevisiae)菌株利用菊糖生产乙醇的能力有限,而蔗糖转化酶Suc2是酿酒酵母水解菊糖的关键酶,其分泌水平直接影响酿酒酵母转化菊糖为乙醇的性能。为提高酿酒酵母中蔗糖转化酶Suc2的分泌表达水平,利用生物信息学的分析方法选择出11种不同的分泌信号肽,包括酿酒酵母内源性、其他菌株来源以及已报道序列优化改造的信号肽,将它们融合至Suc2并构建了相应的酿酒酵母BY4741重组菌。其中,酿酒酵母内源分泌信号肽AGA2能使蔗糖转化酶Suc2更有效的分泌,含有信号肽AGA2的重组菌BY-AG的蔗糖酶酶活和菊糖酶酶活相对于含有天然信号肽的原始菌BY-S分别提高42%和26%,其利用菊糖产乙醇能力较原始菌提高了32%,乙醇产量达到78.11 g/L。在使用毕赤酵母(Pichia pastoris)分泌信号肽MSB2时,蔗糖转化酶Suc2的分泌水平也有提高,含有信号肽MSB2的重组菌BY-MS较原始菌BY-S的蔗糖酶酶活和菊糖酶酶活分别提高了80%和74%,同时,利用菊糖产乙醇能力也提高了56%,产量达到86.31 g/L。最后,对重组菌BY-MS摇瓶发酵过程中的生物量、蔗糖酶酶活、残糖总量和乙醇产量进行了监测,结果表明,重组菌BY-MS的发酵性能较原始菌BY-S有显著提高。本研究为提高蔗糖转化酶Suc2的分泌水平、构建高效菊糖基乙醇生产菌株提供参考。  相似文献   

4.
5.
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.  相似文献   

6.
S-Adenosyl-l -methionine (SAM) is an important small molecule compound widely used in treating various diseases. Although l -methionine is generally used, the low-cost dl -methionine is more suitable as the substrate for industrial production of SAM. However, d -methionine is inefficient for SAM formation due to the substrate-specificity of SAM synthetase. In order to increase the utilization efficiency of dl -methionine, intracellular conversion of d -methionine to l -methionine was investigated in the type strain Saccharomyces cerevisiae BY4741 and an industrial strain S. cerevisiae HDL. Firstly, via disruption of HPA3 encoding d -amino acid-N-acetyltransferase, d -methionine was accumulated in vivo and no N-acetyl-d -methionine production was observed. Further, codon-optimized d -amino acid oxidase (DAAO) gene from Trigonopsis variabilis (Genbank MK280686) and l -phenylalanine dehydrogenase gene (l -PheDH) from Rhodococcus jostii (Genbank MK280687) were introduced to convert d -methionine to l -methionine, SAM concentration and content was increased by 110% and 72.1% in BY4741 (plasmid borne) and increased by 38.2% and 34.1% in HDL (genome integrated), by feeding 0.5 g/L d -methionine. Using the recently developed CRISPR tools, the DAAO and l -PheDH expression cassettes were integrated into the HPA3 and SAH1 loci while SAM2 expression was integrated into the SPE2 and GLC3 loci of HDL, and the resultant strain HDL-R2 accumulated 289% and 192% more SAM concentration and content, respectively, by feeding 0.5 g/L dl -methionine. Further, in a 10 L fed-batch fermentation process, 10.3 g/L SAM were accumulated with the SAM content of 242 mg/g dry cell weight by feeding 16 g/L dl -methionine. The strategies used here provided a promising approach to enhance SAM production using low-cost dl -methionine.  相似文献   

7.
8.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

9.
While screening a large collection of wild and laboratory yeast strains for their ability to attract Drosophila melanogaster adults, we noticed a large difference in fly preference for two nearly isogenic strains of Saccharomyces cerevisiae, BY4741 and BY4742. Using standard genetic analyses, we tracked the preference difference to the lack of mitochondria in the BY4742 strain used in the initial experiment. We used gas chromatography coupled with mass spectroscopy to examine the volatile compounds produced by BY4741 and the mitochondria-deficient BY4742, and found that they differed significantly. We observed that several ethyl esters are present at much higher levels in strains with mitochondria, even in fermentative conditions. We found that nitrogen levels in the substrate affect the production of these compounds, and that they are produced at the highest level by strains with mitochondria when fermenting natural fruit substrates. Collectively these observations demonstrate that core metabolic processes mediate the interaction between yeasts and insect vectors, and highlight the importance mitochondrial functions in yeast ecology.  相似文献   

10.
Aims: The aim of the work is to exploit the yeast pheromone system for controlled cell–cell communication and as an amplification circuit in technical applications, e.g. biosensors or sensor‐actor systems. Methods and Results: As a proof of principle, we developed recombinant Saccharomyces cerevisiae cells that express enhanced green fluorescent protein (EGFP) in response to different concentrations of the alpha (α)‐factor mating pheromone. A respective reporter construct allowing the pheromone‐driven expression of EGFP was transformed into the S. cerevisiae strains BY4741 and BY4741 bar1Δ. Upon addition of synthetic α‐factor, the fluorescence strongly increases after 4 h. Furthermore, cells with constitutive α‐factor expression were able to induce the expression of EGFP in co‐cultivation with sensor cells only if both cell types were deleted for the gene BAR1, encoding α‐factor protease. For technical applications, the immobilization of functionalized cells may be beneficial. We show that pheromone‐induced expression of EGFP is effective in alginate‐immobilized cells. Conclusions: Based on S. cerevisiaeα‐factor, we developed a controlled cell–cell communication system and amplification circuit for pheromone‐driven expression of a target protein. The system is effective both in suspension and after cell immobilization. Significance and Impact of the Study: The developed set of recombinant yeast strains is the basis to apply the yeast pheromone system for signal production and amplification in biosensors or sensor‐actor systems.  相似文献   

11.
12.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

13.
Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp—a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.  相似文献   

14.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol. Project supported by the Guangdong Natural Science Foundation.  相似文献   

15.
Cyclophilins are conserved cistrans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. The accumulation of Cpr1 protein to menadione in Saccharomyces cerevisiae KNU5377Y suggests a possibility that this protein may participate in the mechanism of stress tolerance. Stress response of S. cerevisiae KNU5377Y cpr1Δ mutant strain was investigated in the presence of menadione (MD). The growth ability of the strain was confirmed in an oxidant-supplemented medium, and a relationship was established between diminishing levels of cell rescue enzymes and MD sensitivity. The results demonstrate the significant effect of CPR1 disruption in the cellular growth rate, cell viability and morphology, and redox state in the presence of MD and suggest the possible role of Cpr1p in acquiring sensitivity to MD and its physiological role in cellular stress tolerance. The in vivo importance of Cpr1p for antioxidant-mediated reactive oxygen species (ROS) neutralization and chaperone-mediated protein folding was confirmed by analyzing the expression changes of a variety of cell rescue proteins in a CPR1-disrupted strain. The cpr1Δ to the exogenous MD showed reduced expression level of antioxidant enzymes, molecular chaperones, and metabolic enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)- or adenosine triphosphate (ATP)-generating systems. More importantly, it was shown that cpr1Δ mutant caused imbalance in the cellular redox homeostasis and increased ROS levels in the cytosol as well as mitochondria and elevated iron concentrations. As a result of excess ROS production, the cpr1Δ mutant provoked an increase in oxidative damage and a reduction in antioxidant activity and free radical scavenger ability. However, there was no difference in the stress responses between the wild-type and the cpr1Δ mutant strains derived from S. cerevisiae BY4741 as a control strain under the same stress. Unlike BY4741, KNU5377Y Cpr1 protein was decarbonylated during MD stress. Decarbonylation of Cpr1 protein in KNU5377Y strain seems to be caused by a rapid and efficient gene expression program via stress response factors Hsf1, Yap1, and Msn2. Hence, the decarbonylated Cpr1 protein may be critical in cellular redox homeostasis and may be a potential chaperone to menadione.  相似文献   

16.
Pma1p is an essential plasma membrane H+-pump in Saccharomyces cerevisiae that pumps out H+ at the expense of cellular ATP. Its activity is induced by glucose at 30°C and is inhibited by Hsp30 during exposure to heat shock conditions. To further investigate the regulation of Pma1 function by glucose and Hsp30 during exposure to thermal stress, we estimated Pma1 activity, its protein levels and ser-phosphorylation status in membrane fractions isolated from BY4741 and hsp30Δ cells grown in dextrose and sorbitol at 30°C, and following exposure at 40°C for 30 min. Our results demonstrate that Pma1 activity and protein levels were reduced in Hsp30+ cells following exposure to thermal stress in dextrose media. The above was not observed in hsp30Δ cells wherein Pma1 activity did not decrease following exposure to similar conditions. Although Pma1p levels decreased in heat-shocked hsp30Δ cells, it was lower compared to that observed in Hsp30+ cells. Total ser-phosphorylation of Pma1 also showed a decrease following exposure to heat shock condition in dextrose media in both BY4741 and hsp30Δ cells. Its levels were also reduced in BY4741 cells upon heat shock treatment in sorbitol unlike that observed in hsp30Δ cells wherein it was increased. Taken together the above indicate that heat shock induced reduction in Pma1 activity and protein levels in dextrose media required Hsp30. To examine functional interactions between dextrose utilization, Hsp30 and the regulation of various aspects of Pma1, we determined if dextrose regulated other functions attributed to Hsp30. Results demonstrate that the deletion of HSP30 rendered cells dependent on dextrose utilization for survival during exposure to lethal heat stress. Our study has hence been able to establish a functional relationship between glucose utilization, Hsp30 function and the regulation of Pma1 activity. Finally, since the deletion of HSP30 renders Pma1p levels and its activity unresponsive to thermal stress in dextrose media, we concluded that Hsp30 is necessary to maintain Pma1 in a regulation competent conformation. Hsp30 may thus act as a chaperone in the S. cerevisiae plasma membrane.  相似文献   

17.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

18.
Objectives

Develop a Cell Surface Display system in Saccharomyces cerevisiae, based on the construction of an expression cassette for pYES2 plasmid.

Results

The construction of an expression cassette containing the α-factor signal peptide and the C-terminal portion of the α-agglutinin protein was made and its sequence inserted into a plasmid named pYES2/gDαAgglutinin. The construction allows surface display of bovine herpesvirus type 5 (BoHV-5) glycoprotein D (gD) on S. cerevisiae BY4741 strain. Recombinant protein expression was confirmed by dot blot, and indirect immunofluorescence using monoclonal anti-histidine antibodies and polyclonal antibodies from mice experimentally vaccinated with a recombinant gD.

Conclusions

These results demonstrate that the approach and plasmid used represent not only an effective system for immobilizing proteins on the yeast cell surface, as well as a platform for immunobiologicals development.

  相似文献   

19.
20.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h−1 g (dry weight) of cells−1 (0.24 to 0.30 g h−1 g [dry weight] of cells−1) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h−1. The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h−1 g (dry weight) of cells−1 when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h−1 g (dry weight) of cells−1 when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号