首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated. Based on these findings, we conclude that enhanced GITR-triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting CD4 T cell help. As such, increasing costimulation through GITR may be an attractive strategy to increase anti-viral CTL responses without exacerbating pathology, in particular to persistent viruses such as HIV and HCV.  相似文献   

2.
3.

Background

The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.

Methodology/Principal Findings

We performed a longitudinal study simultaneously measuring T cell activation and maturation markers on both total and antigen-specific T cells in recently infected adults: prior to treatment; after the initiation of HAART; and after treatment was halted. Prior to treatment, HIV-1 Gag–specific CD8+ T cells were predominantly of a highly activated, intermediate memory (CD27+CD28−) phenotype, while CMV pp65-specific CD8+ T cells showed a late memory (CD27−CD28−), low activation phenotype. Participants with the highest fraction of late memory (CD27−CD28−) HIV-1-specific CD8+ T cells had higher CD4+ T cell counts (rho = +0.74, p = 0.004). In turn, those with the highest fraction of intermediate memory (CD27+ CD28−) HIV-1 specific CD8+ T cells had high total CD8+ T cell activation (rho = +0.68, p = 0.01), indicating poorer long-term clinical outcomes. The HIV-1 specific T cell differentiation profile was not readily altered by suppression of T cell activation following HAART treatment.

Conclusions/Significance

A more differentiated, less activated HIV-1 specific CD8+ T cell response may be clinically protective. Anti-retroviral treatment initiated two to four months after infection lowered T cell activation but had no effect on the differentiation profile of the HIV-1-specific response. Intervention during the first month of acute infection may be required to shift the differentiation phenotype of HIV-1 specific responses to a more clinically favorable profile.  相似文献   

4.
T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.  相似文献   

5.
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4+ T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.Adenoviruses have been a focus of interest as vaccine vectors for more than a decade and have been tested in various preclinical and clinical studies for vaccination against viral and bacterial infections (reviewed in reference 38). This interest is based on the ability of adenoviral vectors to induce high antibody titers and robust cytotoxic T-lymphocyte (CTL) responses and on the high immunogenicity of the vector, which might have an adjuvant effect on vaccination (17). Adenoviral vectors have also been extensively evaluated for immunization against HIV (reviewed in reference 1), where they were used either alone or in combination with plasmid DNA or protein in prime-boost immunizations. However, vaccination with adenoviral vectors against HIV showed no effectiveness in a large phase IIb study (4), but it is conceivable that the observed lack of effectiveness was due to the choice of vaccine antigen rather than the vector itself, as the vaccine relied exclusively on the induction of CTL responses, and the outcome was unexpected given previous results from studies in nonhuman primates (33, 42). The findings of the phase IIb study brought about a shift of focus from the CTL response to a more balanced immune response, including neutralizing antibodies, that is now expected to be necessary for protection from HIV infection.Apart from adenoviral vectors that encode vaccine antigens, there have also been approaches to modify adenoviral capsid proteins to include antigenic epitopes. These were mostly inserted into external loops of the hexon protein (5, 22, 25, 26, 43), which is the main component of the adenovirus capsid, but also other components of the capsid, such as fiber, protein IX, and penton base, have been evaluated (22). These studies showed that incorporation of single epitopes into capsid proteins of adenovirus leads to induction of antibody and CD4+ T-cell responses, suggesting that incorporation of epitopes into the adenovirus capsid is a useful tool for epitope-based vaccination.Fusion of a polylysine sequence or an arginine-glycine-aspartic acid motif to adenovirus pIX has been shown to be a tool for redirection of adenovirus tropism to heparan sulfate and αvβ integrins, respectively (9, 41). By fusing green fluorescent protein and luciferase to the C terminus of pIX, it was shown that relatively large proteins can be displayed on the adenovirus capsid while maintaining the protein''s conformation and function as well as virion integrity (24, 28).Here we describe a novel vaccination approach that combines genetic and protein vaccination by using adenoviral vectors not only as gene expression vectors but also as nanoparticle carriers for a vaccine antigen to improve the vaccination efficiency through enhanced induction of antibodies. Display of the vaccine antigen on the adenovirus capsid was achieved by fusion of the antigen to the C terminus of the adenovirus capsid protein pIX. It was shown before that the presentation of antigens in ordered arrays leads to improved antibody responses by cross-linking of B-cell receptors (13). As the adenoviral capsid is highly structured, we hypothesized that fusion to pIX would result in an ordered display of the antigen, presumably facilitating antibody induction.We evaluated this vaccine approach using the Friend virus (FV) infection model. FV is an immunosuppressive retroviral complex that consists of Friend murine leukemia virus (F-MuLV) and the replication-deficient, F-MuLV-dependent spleen focus-forming virus. FV infection of susceptible mice induces rapid polyclonal erythroblast proliferation, which leads to splenic enlargement and erythroleukemia and takes a lethal course also in adult mice (14). Protection from FV infection has been shown to require complex immune responses involving antibodies as well as CD4+ and CD8+ T cells (7). FV is regarded as a useful retrovirus infection model because basic requirements for vaccine protection seem to be similar for FV and HIV infection (8). We demonstrated previously that the FV model is suitable to evaluate and improve adenoviral vectors for antiretroviral vaccination (2), as we showed that a heterologous prime-boost vaccination with adenovirus type 5 (Ad5) and fiber chimeric Ad5F35 vectors led to better protection from FV infection than homologous vaccination, which correlated with improved induction of neutralizing antibodies.For vaccination with expression/display vectors against FV we constructed a fusion protein of the adenoviral capsid protein pIX and the F-MuLV envelope protein gp70 and produced adenoviral vectors expressing the pIX-gp70 fusion protein, which was incorporated into the viral capsid. We vaccinated FV-susceptible CB6F1 hybrid mice with antigen expression/display vectors or with conventional antigen-expressing adenoviral vectors and analyzed the protection conferred by these two vaccines. Having demonstrated that the expression/display vector leads to better protection of mice from FV challenge, we constructed a panel of expression/display vectors displaying different fusion proteins containing F-MuLV Env or Gag in order to elucidate the underlying immunological mechanisms of the improved protection conferred by the adenoviral expression/display vectors.  相似文献   

6.
We tested the hypothesis that therapeutic vaccination against HIV-1 can increase the frequency and suppressive function of regulatory, CD4+ T cells (Treg), thereby masking enhancement of HIV-1-specific CD8+ T cell response. HIV-1-infected subjects on antiretroviral therapy (N = 17) enrolled in a phase I therapeutic vaccine trial received 2 doses of autologous dendritic cells (DC) loaded with HIV-1 peptides. The frequency of CD4+CD25hiFOXP3+ Treg in blood was determined prior to and after vaccination in subjects and normal controls. Polyfunctional CD8+ T cell responses were determined pre- and post-vaccine (N = 7) for 5 immune mediators after in vitro stimulation with Gag peptide, staphylococcal enterotoxin B (SEB), or medium alone. Total vaccine response (post-vaccine–pre-vaccine) was compared in the Treg(+) and Treg-depleted (Treg-) sets. After vaccination, 12/17 subjects showed a trend of increased Treg frequency (P = 0.06) from 0.74% to 1.2%. The increased frequency did not correlate with CD8+ T cell vaccine response by enzyme linked immunosorbent assay for interferon γ production. Although there was no significant change in CD8+ T cell polyfunctional response after vaccination, Treg depletion increased the polyfunctionality of the total vaccine response (P = 0.029), with a >2-fold increase in the percentage of CD8+ T cells producing multiple immune mediators. In contrast, depletion of Treg did not enhance polyfunctional T cell response to SEB, implying specificity of suppression to HIV-1 Gag. Therapeutic immunization with a DC-based vaccine against HIV-1 caused a modest increase in Treg frequency and a significant increase in HIV-1-specific, Treg suppressive function. The Treg suppressive effect masked an increase in the vaccine-induced anti-HIV-1-specific polyfunctional response. The role of Treg should be considered in immunotherapeutic trials of HIV-1 infection.  相似文献   

7.
There is no licensed human vaccine currently available for Rift Valley Fever Virus (RVFV), a Category A high priority pathogen and a serious zoonotic threat. While neutralizing antibodies targeting the viral glycoproteins are protective, they appear late in the course of infection, and may not be induced in time to prevent a natural or bioterrorism-induced outbreak. Here we examined the immunogenicity of RVFV nucleocapsid (N) protein as a CD8+ T cell antigen with the potential for inducing rapid protection after vaccination. HLA-A*0201 (A2)-restricted epitopic determinants were identified with N-specific CD8+ T cells from eight healthy donors that were primed with dendritic cells transduced to express N, and subsequently expanded in vitro by weekly re-stimulations with monocytes pulsed with 59 15mer overlapping peptides (OLPs) across N. Two immunodominant epitopes, VT9 (VLSEWLPVT, N121–129) and IL9 (ILDAHSLYL, N165–173), were defined. VT9- and IL9-specific CD8+ T cells identified by tetramer staining were cytotoxic and polyfunctional, characteristics deemed important for viral control in vivo. These peptides induced specific CD8+ T cell responses in A2-transgenic mice, and more importantly, potent N-specific CD8+ T cell reactivities, including VT9- and IL9-specific ones, were mounted by mice after a booster vaccination with the live attenuated RVF MP-12. Our data suggest that the RVFV N protein is a potent human T cell immunogen capable of eliciting broad, immunodominant CD8+ T cell responses that are potentially protective. Understanding the immune responses to the nucleocapsid is central to the design of an effective RVFV vaccine irrespective of whether this viral protein is effective as a stand-alone immunogen or only in combination with other RVFV antigens.  相似文献   

8.
Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8+ T cell responses, less is known about YFV-specific CD4+ T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4+ T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4+ T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4+ T cell responses that contract, forming a detectable memory population.  相似文献   

9.
10.
Polyvalent mosaic HIV immunogens offer a potential solution for generating vaccines that can elicit immune responses against genetically diverse viruses. However, it is unclear whether key T cell epitopes can be processed and presented from these synthetic Ags and recognized by epitope-specific human T cells. In this study, we tested the ability of mosaic HIV immunogens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors to process and present major HIV clade B and clade C CD8 T cell epitopes in human cells. A bivalent mosaic vaccine expressing HIV Gag sequences was used to transduce PBMCs from 12 HIV-1-infected individuals from the United States and 10 HIV-1-infected individuals from South Africa; intracellular cytokine staining, together with tetramer staining, was used to assess the ability of mosaic Gag Ags to stimulate pre-existing memory responses compared with natural clade B and C vectors. Mosaic Gag Ags expressed all eight clade B epitopes tested in 12 United States subjects and all 5 clade C epitopes tested in 10 South African subjects. Overall, the magnitude of cytokine production induced by stimulation with mosaic Ags was comparable to clade B and clade C Ags tested, but the mosaic Ags elicited greater cross-clade recognition. Additionally, mosaic Ags induced HIV-specific CD4 T cell responses. Our studies demonstrate that mosaic Ags express major clade B and clade C viral T cell epitopes in human cells, as well as support the evaluation of mosaic HIV-1 vaccines in humans.  相似文献   

11.
12.
The main source for endogenous peptides presented by the MHC class I (MHC-I) pathway are de novo-synthesized proteins which are degraded via the ubiquitin proteasome pathway. Different MHC-I Ag pools can be distinguished: first, short-lived defective ribosomal products, which are degraded in concert with or shortly after their synthesis, and, second, functional proteins that enter the standard protein life cycle. To compare the contribution of these two Ag sources to the generation of MHC-I-presented peptides, we established murine cell lines which express as a model Ag the HIV-1 Gag polyprotein fused to ubiquitin (Ub) carrying the epitope SIINFEKL (SL). Gag was expressed either in its wild-type form (UbMGagSL) or as a variant UbRGagSL harboring an N-end rule degron signal. Although UbRGagSL displayed wild-type protein stability, its inherent defective ribosomal products rate observed after proteasome shutdown was increased concomitant with enhanced presentation of the SL epitope. In addition, UbRGagSL induces enhanced T cell stimulation of SL-specific B3Z hybridoma cells as measured in vitro and of adoptively transferred TCR-transgenic OT-1 T cells in vivo. Furthermore, an elevated frequency of SL-specific T cells was detected by IFN-gamma ELISPOT after immunization of naive C57BL/6 mice with UbRGagSL/EL4 cells. These results further underline the role of the defective ribosomal product pathway in adaptive immunity.  相似文献   

13.
Although HLA-B*57 (B57) is associated with slow progression to disease following HIV-1 infection, B57 heterozygotes display a wide spectrum of outcomes, including rapid progression, viremic slow progression, and elite control. Efforts to identify differences between B57-positive (B57(+)) slow progressors and B57(+) rapid progressors have largely focused on cytotoxic T lymphocyte (CTL) phenotypes and specificities during chronic stages of infection. Although CTL responses in the early months of infection are likely to be the most important for the long-term rate of HIV-1 disease progression, few data on the early CTL responses of eventual slow progressors have been available. Utilizing the Multicenter AIDS Cohort Study (MACS), we retrospectively examined the early HIV-1-specific CTL responses of 14 B57(+) individuals whose time to development of disease ranged from 3.5 years to longer than 25 years after infection. In general, a greater breadth of targeting of epitopes from structural proteins, especially Gag, as well as of highly conserved epitopes from any HIV-1 protein, correlated with longer times until disease. The single elite controller in the cohort was an outlier on several correlations of CTL targeting and time until disease, consistent with reports that elite control is typically not achieved solely by protective HLA-mediated CTLs. When targeting of individual epitopes was analyzed, we found that early CTL responses to the IW9 (ISPRTLNAW) epitope of Gag, while generally subdominant, correlated with delayed progression to disease. This is the first study to identify early CTL responses to IW9 as a correlate of protection in persons with HLA-B*57.  相似文献   

14.
Traditional vaccine adjuvants, such as alum, elicit suboptimal CD8+ T cell responses. To address this major challenge in vaccine development, various nanoparticle systems have been engineered to mimic features of pathogens to improve antigen delivery to draining lymph nodes and increase antigen uptake by antigen-presenting cells, leading to new vaccine formulations optimized for induction of antigen-specific CD8+ T cell responses. In this article, we describe the synthesis of a “pathogen-mimicking” nanoparticle system, termed interbilayer-crosslinked multilamellar vesicles (ICMVs) that can serve as an effective vaccine carrier for co-delivery of subunit antigens and immunostimulatory agents and elicitation of potent cytotoxic CD8+ T lymphocyte (CTL) responses. We describe methods for characterizing hydrodynamic size and surface charge of vaccine nanoparticles with dynamic light scattering and zeta potential analyzer and present a confocal microscopy-based procedure to analyze nanoparticle-mediated antigen delivery to draining lymph nodes. Furthermore, we show a new bioluminescence whole-animal imaging technique utilizing adoptive transfer of luciferase-expressing, antigen-specific CD8+ T cells into recipient mice, followed by nanoparticle vaccination, which permits non-invasive interrogation of expansion and trafficking patterns of CTLs in real time. We also describe tetramer staining and flow cytometric analysis of peripheral blood mononuclear cells for longitudinal quantification of endogenous T cell responses in mice vaccinated with nanoparticles.  相似文献   

15.
Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. Current inactivated FMDV vaccines generate short-term, serotype-specific protection, mainly through neutralizing antibody. An improved understanding of the mechanisms of protective immunity would aid design of more effective vaccines. We have previously reported the presence of virus-specific CD8+ T cells in FMDV-vaccinated and -infected cattle. In the current study, we aimed to identify CD8+ T cell epitopes in FMDV recognized by cattle vaccinated with inactivated FMDV serotype O. Analysis of gamma interferon (IFN-γ)-producing CD8+ T cells responding to stimulation with FMDV-derived peptides revealed one putative CD8+ T cell epitope present within the structural protein P1D, comprising residues 795 to 803 of FMDV serotype O UKG/2001. The restricting major histocompatibility complex (MHC) class I allele was N*02201, expressed by the A31 haplotype. This epitope induced IFN-γ release, proliferation, and target cell killing by αβ CD8+ T cells, but not CD4+ T cells. A protein alignment of representative samples from each of the 7 FMDV serotypes showed that the putative epitope is highly conserved. CD8+ T cells from FMDV serotype O-vaccinated A31+ cattle recognized antigen-presenting cells (APCs) loaded with peptides derived from all 7 FMDV serotypes, suggesting that CD8+ T cells recognizing the defined epitope are cross-reactive to equivalent peptides derived from all of the other FMDV serotypes.Foot-and-mouth disease virus (FMDV) is a member of the family Picornaviridae, genus Aphthovirus. The FMDV particle consists of a positive-strand RNA molecule of approximately 8,500 nucleotides, enclosed within an icosahedral capsid. The genome encodes a unique polyprotein from which four structural proteins (P1A, P1B, P1C, and P1D; also referred to as VP4, VP2, VP3, and VP1, respectively) and nine nonstructural proteins are cleaved by viral proteases (48). FMDV shows a high genetic and antigenic variability, which is reflected in the seven serotypes and multiple subtypes reported so far (13). The virus causes a highly contagious infection in cloven-hoofed animals which is characterized by the formation of vesicles on the mouth, tongue, nose, and feet. In addition, most infected animals develop viremia.The virus elicits a rapid humoral response in both infected and vaccinated animals (26). Virus-specific antibodies protect animals in a serotype-specific manner against reinfection or against infection in the case of vaccination, and protection is generally correlated with high levels of neutralizing antibodies (38). Control of the disease is achieved by vaccination with a chemically inactivated whole-virus vaccine emulsified with adjuvant; however, this provides only short-term, serotype-specific protection (2). The introduction of this vaccine has been very successful in areas of the world where the disease is enzootic. However, one of the major difficulties in implementing vaccination is the inability to distinguish vaccinated animals from infected/recovered animals, which may still be shedding virus. Currently, a number of assays specifically developed for this purpose are being validated (29, 41), and the success of these assays is dependent on the use of purified vaccine antigen. A strategy using replication-deficient adenovirus 5 expressing FMDV antigens has been shown to provide early protection against homologous challenge (39).The identification and characterization of T cell epitopes are important for understanding protective immunity mediated by CD8+ and CD4+ T lymphocytes. Such T cell responses are pathogen specific and are restricted by major histocompatibility complex (MHC) class I and class II molecules, which present foreign peptides to the immune system (55, 56). The role of cellular immunity in the protection of animals from FMDV is still a matter of some controversy. Specific T cell-mediated antiviral responses have been observed in cattle and swine following either infection or vaccination (3, 7, 24). CD4+ T cell responses are suggested to play an important role in protection against FMDV, and published studies demonstrate the presence of FMDV-specific MHC class II-restricted responses in cattle and pigs (22, 24). CD4+ epitopes within both P1A and P1D proteins have recently been identified in cattle (23). We have recently reported the presence of FMDV-specific, MHC class I-restricted CD8+ T cell responses in cattle following infection or vaccination. Despite these observations, the significance of cell-mediated immune responses in protective immunity to FMDV remains unclear.Cattle MHC (bovine leukocyte antigen [BoLA]) is relatively complex, with variable haplotypes expressing one, two, or three of the six classical class I genes (6, 15). At present, about 60 full-length validated cattle MHC class I cDNA sequences have been identified (www.ebi.ac.uk/ipd/mhc/bola), and the haplotypes commonly found in the Holstein breed are well characterized. We have previously identified amino acid motifs present in peptides binding to BoLA class I alleles N*02101, N*02201, and N*01301 (20). More recently, a number of Theileria parva CD8+ T cell epitopes presented through these and additional class I alleles have been described (25). Identification of such epitopes allows detailed analysis of cellular immune responses to vaccination and infection.In the present study, we aimed to identify MHC class I-restricted CD8+ T cell epitopes within the FMDV capsid protein. Using a panel of overlapping peptides, we have identified a BoLA A31-restricted epitope that is similar in all FMDV serotypes.  相似文献   

16.
The use of synthetic long peptides (SLP) has been proven to be a promising approach to induce adaptive immune responses in vaccination strategies. Here, we analyzed whether the efficiency to activate cytotoxic T cells by SLP-based vaccinations can be increased by conjugating SLPs to mannose residues. We could demonstrate that mannosylation of SLPs results in increased internalization by the mannose receptor (MR) on murine antigen-presenting cells. MR-mediated internalization targeted the mannosylated SLPs into early endosomes, from where they were cross-presented very efficiently compared to non-mannosylated SLPs. The influence of SLP mannosylation was specific for cross-presentation, as no influence on MHC II-restricted presentation was observed. Additionally, we showed that vaccination of mice with mannosylated SLPs containing epitopes from either ovalbumin or HPV E7 resulted in enhanced proliferation and activation of antigen-specific CD8+ T cells. These findings demonstrate that mannosylation of SLPs augments the induction of a cytotoxic T cell response in vitro and in vivo and might be a promising approach to induce cytotoxic T cell responses in e.g. cancer therapy and anti-viral immunity.  相似文献   

17.
One strategy to induce optimal cellular and humoral immune responses following immunization is to use vaccines or adjuvants that target dendritic cells and B cells. Activation of both cell types can be achieved using specific TLR ligands or agonists directed against their cognate receptor. In this study, we compared the ability of the TLR7/8 agonist R-848, which signals only via TLR7 in mice, with CpG oligodeoxynucleotides for their capacity to induce HIV-1 Gag-specific T cell and Ab responses when used as vaccine adjuvants with HIV-1 Gag protein in mice. Injection of R-848 and CpG oligodeoxynucleotides alone enhanced the innate immune responses in vivo as demonstrated by high serum levels of inflammatory cytokines, including IL-12p70 and IFN-alpha, and increased expression of CD80, CD86, and CD40 on CD11c(+) dendritic cells. By contrast, R-848 was a relatively poor adjuvant for inducing primary Th1 or CD8(+) T cell responses when administered with HIV-1 Gag protein. However, when a TLR7/8 agonist structurally and functionally similar to R-848 was conjugated to HIV-1 Gag protein both Th1 and CD8(+) T cells responses were elicited as determined by intracellular cytokine and tetramer staining. Moreover, within the population of HIV-1 Gag-specific CD8(+) CD62(low) cells, approximately 50% of cells expressed CD127, a marker shown to correlate with the capacity to develop into long-term memory cells. Overall, these data provide evidence that TLR7/8 agonists can be effective vaccine adjuvants for eliciting strong primary immune responses with a viral protein in vivo, provided vaccine delivery is optimized.  相似文献   

18.
19.
Toll-like receptor (TLR) ligands are critical activators of innate immunity and are being developed as vaccine adjuvants. However, their utility in conjunction with viral vector-based vaccines remains unclear. In this study, we evaluated the impact of a variety of TLR ligands on antigen-specific CD8+ T lymphocyte responses elicited by a recombinant adenovirus serotype 26 (rAd26) vector expressing simian immunodeficiency virus Gag in mice. The TLR3 ligand poly(I:C) suppressed Gag-specific cellular immune responses, whereas the TLR4 ligands lipopolysaccharide and monophosphoryl lipid A substantially augmented the magnitude and functionality of these responses by a MyD88- and TRIF-dependent mechanism. These data demonstrate that TLR ligands can modulate the immunogenicity of viral vaccine vectors both positively and negatively. Moreover, these findings suggest the potential utility of TLR4 ligands as adjuvants for rAd vector-based vaccines.Toll-like receptors (TLRs) are critical sensors of infection with a fundamental role in the activation of innate immune responses and the subsequent modulation of pathogen-specific adaptive immunity (2). TLR ligands have therefore emerged as potential vaccine adjuvants, particularly in the context of peptide, protein, and DNA vaccines (17). In particular, TLR agonists are widely reported to modulate antibody and T helper lymphocyte responses, and in some cases CD8+ T lymphocyte responses, elicited by protein-based vaccines (5, 19, 33, 41). However, far less is known about the impact of TLR ligands on the immunogenicity of viral vector-based vaccines.Compared with DNA vaccines, viral vectors are typically more immunogenic, presumably as a result of the activation of innate immunity via multiple TLRs or other pattern recognition receptors (29). Viral vectors elicit robust T lymphocyte responses and thus are attractive vaccine candidates for pathogens such as human immunodeficiency virus type 1 (HIV-1) and malaria (10). Whether the addition of exogenous TLR agonists might further enhance the immunogenicity of viral vectors, however, remains unclear. The few studies that have explored the utility of TLR adjuvants with viral vectors have typically shown no or mild enhancement of antibody and T lymphocyte responses (7, 26). We therefore sought to determine systematically whether TLR ligands can modulate cellular immune responses elicited by a recombinant adenovirus serotype 26 (rAd26) vector in mice.C57BL/6 mice (n = 7 to 8/group) were immunized with a single injection of 3 × 108 viral particles (vp) rAd26-Gag alone or combined with various TLR ligands (1). Vectors were mixed with soluble TLR agonists 1 h prior to intramuscular (i.m.) injection into both quadriceps muscles. Cellular immune responses were assessed by Db/AL11 tetramer binding assays (3, 6), gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays (6), and multiparameter intracellular cytokine staining (ICS) assays (14). As shown in Fig. Fig.11 A, immunization with rAd26-Gag plus either 20 μg Pam3CSK (TLR1/2 ligand) (25), 20 μg Pam2CSK (TLR2/6 ligand) (9, 20), 10 μg flagellin (TLR5 ligand) (5, 8), 100 μg CLO97 (TLR7 ligand) (41), or 40 μg CpG (TLR9 ligand) (40) (all obtained from InvivoGen, San Diego, CA) elicited AL11-specific tetramer-positive responses (3, 6) that were similar to those detected in the unadjuvanted groups.Open in a separate windowFIG. 1.Antigen-specific CD8+ T cell responses elicited by rAd26-Gag are modulated by soluble TLR ligands. (A) C57BL/6 mice (n = 7 to 8 mice/group) were immunized once with 3 × 108 vp rAd26-Gag alone or 3 × 108 vp rAd26-Gag combined with the following TLR ligands: 20 μg synthetic triacylated lipoprotein (Pam3CSK; TLR1/2 ligand), 20 μg synthetic diacylated lipoprotein (Pam2CSK; TLR 2/6 ligand), 100 μg poly(I:C) (TLR3 ligand), 10 μg LPS (TLR4 ligand), 10 μg flagellin (TLR5 ligand), 100 μg CLO97 (TLR7 ligand), or 40 μg unmethylated CpG-oligodeoxynucleotides (CpG; TLR9 ligand). Gag-specific cellular immune responses were assayed by Db/AL11 tetramer binding assays at multiple time points following injection. (B) At week 4 following immunization, functional immune responses from mice immunized with rAd26 vaccine alone or with 10 μg LPS or 100 μg poly(I:C) were assessed by IFN-γ ELISPOT assays in response to pooled Gag peptides, the CD8+ T lymphocyte epitopes AL11 and KV9, and the CD4+ T lymphocyte epitope DD13. (C) Assessment of the dose response of LPS (10 μg, 2 μg, 0.4 μg) and poly(I:C) (100 μg, 20 μg, 4 μg) with rAd26-Gag (n = 4 mice/group) by Db/AL11 tetramer binding assays. (D) Mice were immunized once i.m. with 3 × 108 vp rAd26-Gag alone, rAd26-Gag with 2 μg LPS, or rAd26-Gag with 20 μg poly(I:C) (n = 4 to 8 mice/group), and Gag-specific CD8+ T cell responses in splenocytes were assessed 4 weeks after vaccination by intracellular cytokine assays for IFN-γ, TNF-α, IL-2, and CD107. Responses to pooled Gag peptides are presented for each individual combination of functions and collated as the number of functions elaborated as a percent of total CD8+ T lymphocytes (insert; bar graph) and as the fraction of Gag-specific CD8+ T lymphocytes (insert; pie charts). Mean responses with standard errors are shown (*, P < 0.001; **, P < 0.05; two-tailed t test).The TLR3 ligand poly(I:C) (InvivoGen, San Diego, CA), however, markedly suppressed responses to the rAd26-Gag vaccine (Fig. (Fig.1A).1A). This finding contrasts with prior reports demonstrating its adjuvanticity for protein antigen vaccines (22, 34, 37). By day 28, mice that received the vaccine plus 100 μg poly(I:C) developed Gag-specific CD8+ T lymphocyte responses that were significantly lower (1.7%) than those of mice that received the vaccine alone (5.4%; P < 0.001; two-tailed t test). Similarly, IFN-γ ELISPOT responses in mice that received poly(I:C) were lower than those observed in the unadjuvanted group (Fig. (Fig.1B)1B) (6). In a dose response study (Fig. (Fig.1C),1C), 100-μg, 20-μg, and 4-μg doses of poly(I:C) all resulted in diminished tetramer-positive responses.In contrast, the TLR4 ligand lipopolysaccharide (LPS) (Ultrapure LPS from Escherichia coli 0111:B4; InvivoGen, San Diego, CA) substantially enhanced Gag-specific CD8+ T lymphocyte responses elicited by the rAd26-Gag vaccine (Fig. (Fig.1A).1A). At day 28, tetramer-positive responses in mice that received the vaccine plus 10 μg LPS (9.6%) were significantly higher than those in the unadjuvanted group (5.4%; P = 0.04). Moreover, IFN-γ ELISPOT responses (6, 21) to pooled Gag peptides, the CD8+ T lymphocyte epitopes AL11 and KV9, and the CD4+ T lymphocyte epitope DD13 were greater in mice that received the vaccine with LPS than in mice that received the vaccine alone at week 4 after immunization (P = 0.02) (Fig. (Fig.1B).1B). To further quantify this effect, mice were immunized once i.m. (n = 4 mice/group) with rAd26-Gag with various doses of LPS (10 μg, 2 μg, 0.4 μg). Tetramer-positive responses were enhanced by 10 μg and 2 μg LPS but not by 0.4 μg LPS (Fig. (Fig.1C),1C), indicating that this LPS effect was dose dependent. No overt clinical toxicities were observed by using these doses of LPS in mice.We next evaluated the functionality of CD8+ T lymphocyte responses by multiparameter ICS assays that assessed IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), and the cytotoxic degranulation marker CD107 expression at week 4 following immunization with rAd26-Gag alone, rAd26-Gag with 2 μg LPS, or rAd26-Gag with 20 μg poly(I:C) (n = 4 to 8 mice/group) (15). As shown in Fig. Fig.1D,1D, the addition of LPS significantly enhanced not only the overall magnitude of Gag-specific CD8+ T lymphocyte responses (P = 0.04) but also the fraction of Gag-specific CD8+ T lymphocytes that expressed two or more effector functions (P = 0.04). In particular, the LPS-adjuvanted group induced higher levels of single-function CD107+, 2-function TNF-α+ CD107+, as well as 3-function IFN-γ+ TNF-α+ CD107+ CD8+ T lymphocytes than mice that received rAd26-Gag alone. These data show that LPS enhanced both the magnitude and functionality of antigen-specific cellular responses elicited by rAd26-Gag. In contrast, the addition of poly(I:C) diminished both the overall magnitude of Gag-specific responses and the fraction of these responses that were multifunctional.We further characterized the opposing effects of poly(I:C) and LPS by administering the rAd26-Gag vaccine with both poly(I:C) and LPS. C57BL/6 mice (n = 4 mice/group) were immunized with a single injection of rAd26-Gag alone or with 10 μg LPS, 60 μg poly(I:C), or both TLR ligands. As shown in Fig. Fig.22 A, administration of both TLR ligands resulted in reduced Gag-specific responses, suggesting that the suppressive effect of poly(I:C) was dominant over the enhancing effect of LPS. To determine the durability of the effects of poly(I:C) and LPS, C57BL/6 mice were primed with rAd26-Gag alone or with 2 μg LPS or 20 μg poly(I:C) (n = 4 mice/group) and were boosted on day 35 with a single i.m. injection of the heterologous vector rAd5HVR48(1-7) also expressing simian immunodeficiency virus (SIV) Gag (32). As shown in Fig. Fig.2B,2B, the mice that received poly(I:C) with the priming immunization responded to the boosting immunization with Gag-specific responses that were comparable to those observed in the mice that received rAd26-Gag alone. In contrast, mice that received LPS with the priming immunization exhibited sustained enhanced Gag-specific tetramer and ELISPOT responses, demonstrating the proliferative potential of antigen-specific CD8+ T lymphocytes elicited by the LPS-adjuvanted rAd26-Gag vaccine.Open in a separate windowFIG. 2.Dominant suppressive effect of poly(I:C) over LPS with the rAd26-Gag vaccine. (A) Mice were immunized once i.m. with 3 × 108 vp rAd26-Gag alone or with 20 μg poly(I:C), 2 μg LPS, or both poly(I:C) and LPS (n = 4 mice/group). Gag-specific CD8+ T lymphocyte responses were assessed by Db/AL11 tetramer binding assays and IFN-γ ELISPOT assays 4 weeks after immunization. (B) Mice were primed once with 3 × 108 vp rAd26-Gag alone or with 2 μg LPS or 20 μg poly(I:C) and then boosted (↓) with 3 × 108 vp rAd5HVR48(1-7) at week 5. Gag-specific cellular immune responses were assessed by Db/AL11 tetramer binding assays and by IFN-γ ELISPOT responses at week 4 postboost. Mean responses with standard errors are shown.We next investigated whether the mechanism underlying the immunomodulatory effects of LPS and poly(I:C) involved the expected TLR signaling pathways. Although LPS and poly(I:C) are chiefly considered TLR ligands, poly(I:C) can also signal through the intracellular sensor MDA-5 (14), and both LPS and poly(I:C) may activate inflammasomes through Nalp3 (12, 28). To explore whether the effects of LPS and poly(I:C) involved TLR signaling, we utilized C57BL/6 mice lacking TRIF (Jackson Laboratory, Bar Harbor, ME), which is utilized by TLR3, or C57BL/6 mice lacking MyD88 (provided by S. Akira and B. Pulendran), which is utilized by the majority of TLRs. In particular, TLR4 signals through both TRIF and MyD88. Wild-type, MyD88−/−, and TRIF−/− mice (n = 4 mice/group) were immunized with rAd26-Gag vaccine alone or with 2 μg LPS or 20 μg poly(I:C). As shown in Fig. Fig.3,3, the adjuvant activity of LPS was abrogated in both MyD88−/− and TRIF−/− mice (Fig. 3A and B), suggesting that the adjuvanticity of the TLR4 ligand LPS was dependent on both MyD88 and TRIF, as expected. In contrast, the suppressive effect of poly(I:C) was observed in MyD88−/− mice but not in TRIF−/− mice (Fig. 3A and B), indicating that the suppressive effect of the TLR3 ligand poly(I:C) was dependent on TRIF, rather than MDA-5 or nonspecific effects (14, 39). These data confirm that the immunomodulatory effects of LPS and poly(I:C) were dependent on the expected TLR signaling pathways.Open in a separate windowFIG. 3.The immunomodulatory effects of poly(I:C) and LPS are TLR dependent. MyD88−/− and TRIF−/− mice (n = 4 mice/group) were immunized once i.m. with 3 × 108 vp rAd26-Gag alone or with 2 μg LPS or 20 μg poly(I:C). (A) Db/AL11 tetramer binding assays were performed at multiple time points following injection, and (B) IFN-γ ELISPOT responses were assessed 4 weeks after immunization. Mean responses with standard errors are shown.LPS is not a likely adjuvant for clinical development as a result of its toxicities, and alternative TLR4 ligands have been developed for potential clinical use. In particular, monophosphoryl lipid A (MPLA) is an LPS derivative that retains the immunologically active lipid A portion of the parent molecule (23, 27). The reduced toxicity of MPLA is attributed to the preferential recruitment of TRIF upon TLR4 activation, resulting in decreased induction of inflammatory cytokines (18). To determine if MPLA can similarly adjuvant cellular immune responses elicited by rAd26-Gag, C57BL/6 mice were immunized with 3 × 107, 3 × 108, or 3 × 109 vp rAd26-Gag alone or with 5 μg MPLA (derived from Salmonella enterica serovar Minnesota R595 LPS; InvivoGen, San Diego, CA) (n = 4 mice/group). This optimal dose of MPLA was selected by dose response studies (data not shown). As shown in Fig. Fig.44 A, Gag-specific IFN-γ ELISPOT responses to the lowest dose of vector were essentially undetectable in the unadjuvanted group, consistent with prior observations (1). In contrast, clear responses were observed in the mice that received 3 × 107 vp rAd26-Gag with MPLA (P < 0.01; two-tailed t test). Mice that received the 3 × 108 vp and 3 × 109 vp doses of rAd26-Gag with MPLA also exhibited higher Gag-specific cellular immune responses than the unadjuvanted groups (P < 0.01). Functionality of these Gag-specific CD8+ T lymphocyte responses, as measured by multiparameter ICS assays assessing IFN-γ, TNF-α, IL-2, and CD107 expression, was also greater in mice that received rAd26-Gag with MPLA compared with rAd26-Gag (P < 0.05 for the lowest dose group) (Fig. (Fig.4B).4B). Thus, the TLR4 ligand MPLA also augmented antigen-specific CD8+ T lymphocyte responses elicited by rAd26-Gag.Open in a separate windowFIG. 4.The TLR4 ligand MPLA augments the immunogenicity of rAd26-Gag. C57BL/6 mice (n = 4 mice/group) were immunized once i.m. with 3 × 107, 3 × 108, or 3 × 109 vp rAd26-Gag with or without 5 μg MPLA. Gag-specific cellular immune responses were assessed 4 weeks after immunization by IFN-γ ELISPOT responses (*, P < 0.01 for responses to pooled Gag peptides; two-tailed t test) (A) and by ICS for IFN-γ, TNF-α, IL-2, and CD107 (B). Responses to pooled Gag peptides in mice immunized with 3 × 107 vp rAd26-Gag with or without 5 μg MPLA are presented for each individual combination of functions and collated as the number of functions as a fraction of the total Gag-specific CD8+ T lymphocyte response (insert; pie charts) (**, P < 0.05). (C) Cytokine levels were measured in sera of mice 8 h after immunization with 3 × 108 vp rAd26-Gag alone or 3 × 108 vp rAd26-Gag with 5 μg MPLA or 2 μg LPS (n = 4 mice/group). Mean responses with standard errors are shown.To explore differences in acute inflammatory responses following MPLA and LPS administration, serum levels of IL-1α, IL-6, granulocyte colony-stimulating factor (G-CSF), and IP-10 were assessed 8 h after vaccination in duplicate using multiplexed fluorescent bead-based immunoassays (Millipore, Billerica, MA) and analyzed on the Luminex 100 IS (Luminex, Austin, TX). As shown in Fig. Fig.4C,4C, mice that received MPLA had lower levels of the MyD88-associated acute proinflammatory cytokines IL-1α and IL-6 than mice that received LPS, as expected. Levels of IP-10 and G-CSF, which are associated with TRIF activation (18), were comparable (Fig. (Fig.4B).4B). These data confirm that MPLA resulted in lower levels of systemic inflammatory cytokine secretion than LPS.Optimization of the immunogenicity of viral vectors is an important research priority. However, there have been few reports addressing the potential use of adjuvants together with viral vectors. Combining alum with rAd35 elicited improved antibody responses to a malaria antigen (24), and the addition of TLR9 agonists (CpGs) resulted in paradoxically diminished immune responses elicited by a rAd5 vector but improved protection against a cancer antigen (13). Most recently, Appledorn et al. reported enhanced antigen-specific T lymphocyte responses with the coadministration of a rAd vector engineered to express a novel TLR5 agonist (4). Our study extends these findings and represents the first systematic investigation of the capacity of a panel of soluble TLR ligands to modulate rAd-elicited CD8+ T lymphocyte responses.The TLR agonists that modulated vaccine-elicited immune responses in this study included poly(I:C), LPS, and MPLA. These ligands have all been reported to augment CD8+ T lymphocyte responses elicited by peptide or protein vaccines (11, 22, 31, 33, 42), presumably through enhanced cross-presentation (34, 35). TLR signaling has been shown to be important for virus-elicited CD8+ T lymphocyte responses (38), often through activation of multiple TLRs or other pattern recognition receptors (30). The activation of TLR4 by LPS or MPLA with a viral vector most likely provides an additive or synergistic signal, probably resulting in enhanced APC maturation in the appropriate cytokine milieu. Moreover, immunization of the viral vector and LPS at different sites abrogated the observed adjuvanticity (data not shown), indicating that TLR4 adjuvanticity involves a local mechanism of action. However, the mechanism by which a TLR3 agonist suppresses immunogenicity of a viral vector remains unclear. It is possible that the high levels of type I interferon elicited by poly(I:C) (data not shown) may limit expression from the rAd26 vector. Alternatively, poly(I:C) has been reported to elicit IL-10 secretion, and this suppressive cytokine may limit CD8+ T cell proliferation (22, 36). The unexpected suppressive activity of poly(I:C) illustrates the inherent complexity of viral vectors compared to protein-based vaccines (16, 37).Our data demonstrate that antigen-specific CD8+ T lymphocyte responses elicited by a rAd26-Gag vaccine vector can be both positively and negatively modulated by soluble TLR ligands, and the mechanism underlying these observations involves the expected TRIF and MyD88 signaling pathways. In particular, the TLR4 ligands LPS and MPLA substantially augmented the magnitude and functionality of antigen-specific cellular immune responses elicited by this vaccine vector. These findings suggest that TLR ligands, particularly MPLA, deserve further exploration as potential adjuvants to improve the immunogenicity and protective efficacy of viral vaccine vectors.  相似文献   

20.
HIV-1 use CD4 receptors to infect their primary targets, CD4+ cells, whereas CD8+ cells have a protective role against HIV-1. We recently isolated HIV-1-producing CD8+ clones from two AIDS patients. Here we show that although HIV-1 produced by CD8+ cells maintained the ability to infect CD4+ cells, these viruses were able to infect CD8+ cells independent of CD4. Evidence indicates that these viruses used CD8 as a receptor to infect CD8+ cells. First, expression of CD8 was downmodulated after infection. Second, anti-CD8 antibodies blocked viral entry and replication in CD8+ cells. Finally, resistant cells became susceptible after expression of CD8. Although these viruses used CXCR4 to enter CD4+ cells, it seems that infection of CD8+ cells was independent of CXCR4 or CCR5 co-receptors. Novel changes were observed in envelope sequences of CD8-tropic viruses. These results provide initial evidence that HIV-1 can mutate to infect CD8+ cells using CD8 as a receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号