首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.  相似文献   

2.
It is generally accepted that CD8 T cells play the key role to maintain HSV-1 latency in trigeminal ganglia of ocularly infected mice. Yet, comparably little is known about the role of innate immunity in establishment of viral latency. In the current study, we investigated whether CD8α DCs impact HSV-1 latency by examining latency in the trigeminal ganglia (TG) of wild-type (WT) C57BL/6 versus CD8α−/− (lack functional CD8 T cells and CD8α+ DCs), CD8β−/− (have functional CD8α+ T cells and CD8α+ DCs), and β2m−/− (lack functional CD8 T cells but have CD8α+ DCs) mice as well as BXH2 (have functional CD8 T cells but lack CD8α+ DCs) versus WT C3H (have functional CD8α T cells and CD8α+ DCs) mice. We also determined whether the phenotype of CD8α−/− and BXH2 mice could be restored to that of WT mice by adoptive transfer of WT CD8+ T cells or bone marrow (BM) derived CD8α+ DCs. Our results clearly demonstrate that CD8α DCs, rather than CD8 T cells, are responsible for enhanced viral latency and recurrences.  相似文献   

3.
Human CD4+CD25+FoxP3+ T regulatory cells (Tregs) control effector T cells and play a central role in peripheral tolerance and immune homeostasis. Heat shock protein 70 (HSP70) is a major immunomodulatory molecule, but its effect on the functions of Tregs is not well understood. To investigate target-dependent and –independent Treg functions, we studied cytokine expression, regulation of proliferation and cytotoxicity after exposure of Tregs to HSP70. HSP70-treated Tregs significantly inhibited proliferation of CD4+CD25 target cells and downregulated the secretion of the proinflammatory cytokines IFN-γ and TNF-α. By contrast, HSP70 increased the secretion of Treg suppressor cytokines IL-10 and TGF-β. Treatment with HSP70 enhanced the cytotoxic properties of Tregs only to a minor extent (4-fold), but led to stronger responses in CD4+CD25 cells (42-fold). HSP70-induced modulation of T-cell responses was further enhanced by combined treatment with HSP70 plus IL-2. Treatment of Tregs with HSP70 led to phosphorylation of PI3K/AKT and the MAPKs JNK and p38, but not that of ERK1/2. Exposure of Tregs to specific inhibitors of PI3K/AKT and the MAPKs JNK and p38 reduced the immunosuppressive function of HSP70-treated Tregs as indicated by the modified secretion of specific target cell (IFN-γ, TNF-α) and suppressor cytokines (IL-10, TGF-β). Taken together, the data show that HSP70 enhances the suppressive capacity of Tregs to neutralize target immune cells. Thus HSP70-enhanced suppression of Tregs may prevent exaggerated immune responses and may play a major role in maintaining immune homeostasis.  相似文献   

4.
5.
In January 2010 two groups independently published the observation that the depletion of CD8+ cells in SIV-infected macaques had no detectable impact on the lifespan of productively infected cells. This unexpected observation led the authors to suggest that CD8+ T cells control SIV viraemia via non-lytic mechanisms. However, a number of alternative plausible explanations, compatible with a lytic model of CD8+ T cell control, were proposed. This left the field with no consensus on how to interpret these experiments and no clear indication whether CD8+ T cells operated primarily via a lytic or a non-lytic mechanism. The aim of this work was to investigate why CD8+ T cells do not appear to reduce the lifespan of SIV-infected cells in vivo.  相似文献   

6.
Human cardiac stem/progenitor cells and their potential for repair of heart injury are a current hot topic of research. CD117 has been used frequently as a marker for identification of stem/progenitor cells in the heart. However, cardiac mast cells, which are also CD117+, have not been excluded by credible means when selecting putative cardiac progenitors by using CD117 as a marker. We evaluated the relationship between CD117+ cells and mast cells in the left ventricle of human hearts (n=5 patients, ages 1 week–75 years) with the well-established mast cell markers tryptase, toluidine blue, and thionine. A large number (85–100%) of CD117+ cells in the human heart were specifically identified as mast cells. In addition, mast cells showed weak or moderate CD45 immunostaining signals. These results indicate that the majority of CD117+ cells in the heart are mast cells and that these cells are distinctly positive for CD45, although staining was weak or moderate. These results strongly suggest that the newly reported CD117+/CD45dim/moderate putative cardiac progenitor cells are mast cells. The significance of this observation in stem cell research of the heart is discussed. (J Histochem Cytochem 58:309–316, 2010)  相似文献   

7.

Background

Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research.

Methods and Findings

Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice.

Conclusion/Significance

Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.  相似文献   

8.
9.

Background

Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4+ regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown.

Methodology/Principal Findings

HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4+ T cells. The production of IFN-γ was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4+ T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV+ hepatocytes upregulated the production of TGF-β and blockade of TGF-β abrogated Treg phenotype and function.

Conclusions/Significance

These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses.  相似文献   

10.
11.
CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6 CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6 subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6 cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells.  相似文献   

12.
13.
14.

Background

Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.

Methodology/Principal Findings

Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.

Conclusions/Significance

Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.  相似文献   

15.

Background

Human T-lymphotropic virus type 1 (HTLV-1) is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL). The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified.

Principal Findings

Here, we demonstrate that CD4+CD25+CCR4+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2), Th17, and regulatory T (Treg) cells in healthy individuals, we demonstrate that IFN-γ production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4+CD25+CCR4+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-γ-producing CD4+CD25+CCR4+Foxp3 T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity.

Conclusions

We have defined a unique T cell subset—IFN-γ+CCR4+CD4+CD25+ T cells—that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.  相似文献   

16.
17.
Besides CD4+CD25+Foxp3+ regulatory T cells (Tregs), other immunosuppressive T cells also participated in the regulation of immune tolerance. Reportedly, neuropilin-1 (Nrp1) might be one of the molecules by which regulatory cells exert their suppressive effects. Indeed, CD4+CD25Nrp1+ T cells exhibit potent suppressive function in autoimmune inflammatory responses. Here we investigated the specific role of CD4+CD25Nrp1+ T cells in the setting of the transplant immune response. Through MLR assays, we found that CD4+CD25Nrp1+ T cells suppressed the proliferation of naive CD4+CD25 T cells activated by allogeneic antigen-stimulation. Adoptive transfer of CD4+CD25Nrp1+ T cells synergized with rapamycin to induce long-term graft survival in fully MHC-mismatched murine heart transplantation, which was associated with decreased IFN-γ, IL-17 and increased IL-10, TGF-β, Foxp3 and Nrp1 expression in the grafts. Importantly, our data indicated that CD4+CD25Nrp1+ T cell transfer augments the accumulation of Tregs in the recipient, and creates conditions that favored induction of hyporesponsiveness of the T effector cells. In conclusion, this translational study indicates the possible therapeutic potential of CD4+CD25Nrp1+ T cells in preventing allorejection. CD4+Nrp1+ T cells might therefore be used in bulk as a population of immunosuppressive cells with more beneficial properties concerning ex vivo isolation as compared to Foxp3+ Tregs.  相似文献   

18.
Dendritic cells (DCs) as antigen presenting cells can stimulate naive CD4+ T cells and initiate the primary immune response which controls Th1/Th2 development. It has been suggested that DCs derived from different tissues have distinct properties. We investigated whether DCs from mesenteric lymph nodes (MLN), Peyer's patches (PP) and spleen (SPL) could induce different responses of naive CD4+ T cells to varying doses of antigen by using a co-culture system of DCs and T cells. DCs from each tissue induced IL-4 secretion from naive CD4+T cells in the presence of low dose antigenic peptide, and induced IFN-γ production at high doses of antigen. When purified CD11c+/B220? DCs were used, MLN-derived DCs induced a higher amount of IFN-γ secretion from naive CD4+ T cells, compared with SPL-derived DCs. We could not detect large differences in the expressions of costimulatory molecules on the surface of these two populations of DCs. On the other hand, we found that large amounts of IL-12 were secreted from MLN DCs in an antigen dose-dependent fashion. In conclusion, DCs from SPL, MLN and PP can induce the production of both IL-4 and IFN-γ from naive CD4+ T cells, depending on antigen dose. MLN-derived CD11c+/B220? DCs induce higher IFN-γ production from naive CD4+ T cells than SPL-derived DCs, through efficient IL-12 secretion.  相似文献   

19.
20.
The control of pathogen density during infections is typically assumed to be the result of a combination of resource limitation (loss of target cells that the pathogen can infect), innate immunity, and specific immunity. The contributions of these factors have been considered in acute infections, which are characterized by having a short duration. What controls the pathogen during persistent infections is less clear, and is complicated by two factors. First, specific immune responses become exhausted if they are subject to chronic stimulation. Exhaustion has been best characterized for CD8 T cell responses, and occurs through a combination of cell death and loss of functionality of surviving cells. Second, new nonexhausted T cells can immigrate from the thymus during the infection, and may play a role in the control of the infection. In this article, we formulate a partial-differential-equation model to describe the interaction between these processes, and use this model to explore how thymic influx and exhaustion might affect the ability of CD8 T cell responses to control persistent infections. We find that although thymic influx can play a critical role in the maintenance of a limited CD8 T cell response during persistent infections, this response is not sufficiently large to play a significant role in controlling the infection. In doing so, our results highlight the importance of resource limitation and innate immunity in the control of persistent infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号