首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Klebsiella sp. strain ATCC13883T capable of degrading carbofuran phenol (2,3-dihydro-2,2-dimethylbenzofuran-7-ol) has been separated from the soil by enrichment culture technique and immobilized in various, namely polyurethane foam (PUF), polyacrylamide, alginate, agar and alginate-bentonite clay-powdered activated charcoal (PAC). The degradation rates of 20 and 30 mM carbofuran phenol by free and immobilized cells in batch and semi-continuous shaken cultures were compared. The PUF-immobilized cells achieved higher degradation rates in a shorter time than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- and alginate-bentonite clay-PAC-immobilized cells could be reused for more than 36 cycles, polyacrylamide-entrapped cells for 20 cycles and alginate-bentonite-PAC 28 cycles, without losing any degradation capacity and showed better tolerance to pH, temperature and concentration changes than free cells. These results showed that cells immobilized in modified alginate-bentonite-PAC immobilizers tolerated and completely degraded carbofuran phenol at initial concentrations of 20 and 30 mM and also higher. Such a bacterial strain could be used for bioremediation of environments contaminated with phenolic compounds.  相似文献   

2.
Summary Cells ofRhodospirillum rubrum have been immobilized in various gels and tested for photobiological hydrogen production. Agar proved to be the best immobilizing agent with respect to production rates as well as stability. Agar immobilized cells were also superior compared to liquid suspension cultures. Growth conditions of the cells prior to immobilization, e.g. cell age, light intensity or nutrient composition, were of primary importance for the activity in the later immobilized state. A reactor with agar immobilized cells has been operated successfully over 3000 h with a loss of the activity of about 60%. Mean rates for hydrogen production for immobilized cells in this work during the first 60 to 70 hours after immobilization were in the range of 18 to 34 μl H2 mg−1 d.w. h−1 and thus by a factor of up to 2 higher than liquid cultures under the same conditions. Maximal rates of hydrogen production (57 μl H2 ml−1 immobilized cell suspension) were reached in agar gel beads with cells immobilized after 70 h growth in liquid culture in the light and a cell density of 1.0 mg ml−1, 70 h after immobilization.  相似文献   

3.
Electrospinning, a simple and versatile method to fabricate nanofibrous supports, has attracted attention in the field of enzyme immobilization. Biocomposite nanofibers were fabricated from mixed PVA/BSA solution and the effects of glutaraldehyde treatment, initial BSA concentration and PVA concentration on protein loading were investigated. Glutaraldehyde cross-linking significantly decreased protein release from nanofibers and BSA loading reached as high as 27.3% (w/w). In comparison with the HRP immobilized into the nascent nanofibrous membrane, a significant increase was observed in the activity retention of the enzyme immobilized into the PVA/BSA biocomposite nanofibers. The immobilized HRP was able to tolerate much higher concentrations of hydrogen peroxide than the free enzyme and thus the immobilized enzyme did not demonstrate substrate inhibition. The immobilized HRP retained ⿼50% of the free enzyme activity at 6.4 mM hydrogen peroxide and no significant variation was observed in the KM value of the enzyme for hydrogen peroxide after immobilization. In addition, reusability tests showed that the residual activity of the immobilized HRP were 73% after 11 reuse cycles. Together, these results demonstrate efficient immobilization of HRP into electrospun PVA/BSA biocomposite nanofibers and provide a promising immobilization strategy for biotechnological applications.  相似文献   

4.
Two matrices have been assessed for their ability to immobilize Lactobacillus casei cells for lactic acid fermentation in whey permeate medium. Agar at 2% concentration was found to be a better gel than polyacrylamide in its effectiveness to entrap the bacterial cells to carry out batch fermentation up to three repeat runs. Of the various physiological parameters studied, temperature and pH were observed to have no significant influence on the fermentation ability of the immobilized organism. A temperature range of 40–50°C and a pH range of 4.5–6.0 rather than specific values, were found to be optimum when fermentation was carried out under stationary conditions. In batch fermentation ~90% conversion of the substrate (lactose) was achieved in 48 h using immobilized cell gel cubes of 4 × 2 × 2 mm size, containing 400 mg dry bacterial cells per flask and 4.5% w/v (initial) whey lactose content as substrate. However, further increase in substrate levels tested (>4.5% w/v) did not improve the process efficiency. Supplementation of Mg2+ (1 mM) and agricultural by-products (mustard oil cake, 6%) in the whey permeate medium further improved the acid production ability of the immobilized cells under study.  相似文献   

5.
《Process Biochemistry》2007,42(10):1412-1418
Enantioselective reduction of 1-acetonapthone to S(−)-1-(1-naphthyl) ethanol, a key intermediate for the synthesis of HMG Co-A reductase inhibitor, was successfully carried out using immobilized cells of a newly isolated carbonyl reductase producing yeast strain Candida viswanathii MTCC 5158. Calcium alginate (1.5%, w/v) gave the best immobilization efficiency. Among different organic solvents and ionic liquids tried as reaction media, isopropanol gave the best enantioselectivity with moderate conversion. The immobilized cells (100 mg/ml in 50 mM Tris buffer pH 9) showed best results at a substrate concentration of 0.2 mg/ml at 30 °C. After twelve cycles of reaction, no significant decrease in bioreduction efficiency of the immobilized cells was observed as compared to the free cells.  相似文献   

6.

Pectin was modified by oxidation with sodium periodate at molar ratios of 2.5, 5, 10, 15 and 20 mol% and reductive amination with tyramine and sodium cyanoborohydride afterwards. Concentration of tyramine groups within modified pectin ranged from 54.5 to 538 μmol/g of dry pectin while concentration of ionizable groups ranged from 3.0 to 4.0 mmol/g of dry polymer compared to 1.5 mmol/g before modification due to the introduction of amino group. All tyramine-pectins showed exceptional gelling properties and could form hydrogel both by cross-linking of carboxyl groups with calcium or by cross-linking phenol groups with peroxidase in the presence of hydrogen peroxide. These hydrogels were tested as carriers for soybean hull peroxidase (SHP) immobilization within microbeads formed in an emulsion based enzymatic polymerization reaction. SHP immobilized within tyramine-pectin microbeads had an increased thermal and organic solvent stability compared to the soluble enzyme. Immobilized SHP was more active in acidic pH region and had slightly decreased K m value of 2.61 mM compared to the soluble enzyme. After 7 cycles of repeated use in batch reactor for pyrogallol oxidation microbeads, immobilized SHP retained half of the initial activity.

  相似文献   

7.
Synthesis and lysis of formate by immobilized cells of Escherichia coli   总被引:2,自引:0,他引:2  
Formate hydrogenlyase (FHL) activity was induced in a strain of Escherichia coli S13 during anaerobic growth in yeast extract-tryptone medium containing 100 mM formate. The cells obtained at the optimum growth phase were immobilized in 2.5% (w/v) agar gel when 50-60% of the whole cell FHL activity was retained. The immobilized FHL system had good storage stability and recycling efficiency. In the lysis of formate, an increase of formate concentration to 1.18M increased QH(2) (initial) value of the immobilized cell, and subsequently cells, hydrogen evolution, in general, ceased after 6 to 8 of incubation, resulting in incomplete lysis of formate. Presence of small amount of glucose (28 mM) was more or less quantitatively lysed with concomitant disappearence of glucose from the medium. Synthesis of formate from hydrogen and bicarbonate solution by the immobilized cells was also characterized. Presence of glucose (10 mM) in 50 mM bicarbonate solution stimulated formate synthesis by immobilized cells. The pH optimum range, K(m), and specific activity of the immobilized cells for the lysis of formate were 6.8-7.2 0.4M, and 66 mL/g cell-h, respectively. The cells could fix hydrogen to the extent of 24.4% (w/w) of its own wet cell mass in a 72-h reaction cycle. Potentiality of the immobilized FHL system for biotechnological exploitation was discussed.  相似文献   

8.
Growing cells of a thermophilic strain ofBacillus brevis, producer of thermostable α-amylase, were immobilized by entrapment in agar gel. Optimum immobilization conditions for effective α-amylase production in batch fermentations were established (gel concentration 3%, initial biomass concentration in the gel 0.8% (W/V), and preculture age—late exponential phase). The dynamics of α-amylase synthesis by the biocatalysts obtained under the optimal conditions was compared with that of free cells and the operational stability of the biocatalysts was studied in semicontinuous cultivation experiments. Maximum α-amylase yields (252% of the control) were achieved after the second cycle of cultivation. Scanning electron microscopy was used to characterize the bacteria entrapped in agar gel.  相似文献   

9.
The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.  相似文献   

10.

Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5′-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.

  相似文献   

11.
Wang  Qi  Xin  Yinqiang  Zhang  Feng  Feng  Zhiyong  Fu  Jin  Luo  Lan  Yin  Zhimin 《World journal of microbiology & biotechnology》2011,27(3):693-700
γ-aminobutyric acid (GABA) is an important bioactive regulator, and its biosynthesis is primarily through the α-decarboxylation of glutamate by glutamate decarboxylase (GAD). The procedures to obtain GABA by bioconvertion with high activity recombinant Escherichia coli GAD have been seldom understood. In this study, Escherichia coli GAD (gadA) was highly expressed (about 70–75% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-gadA, which was induced by 0.4 mM IPTG in LB medium, and maximal GABA-forming activity of the recombinant GAD was 40 U/mL at a concentration (0.15 mM) of pyridoxal phosphate (PLP) and a concentration (0.6 mM) of Ca2+ at optimal pH of 3.8. The optimal concentration (7.5 mM) of Mn2+ can also improve the activity of recombinant enzyme, but the co-effect of Ca2+ and Mn2+ exhibited antagonism effect when added simultaneously. LB and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The relative activity was markedly higher activated by Ca2+ (174%), Mn2+ (164%) than that by other seven bivalent cations. Finally, the yield of GABA was high of 94 g/L detected by paper chromatography or HPLC in 1 L reaction system with 30 mL crude GAD (12 U/mL). By entrapping Escherichia coli glutamate decarboxylase into sodium alginate and carrageenan gel beads, the activity of immobilized GAD (IGAD) remained 85% during the initial five batches and the activity still remained 50% at the tenth batch, these results indicated that the recombinant Escherichia coli GAD was feasible for the future industrial production of GABA.  相似文献   

12.
A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid.  相似文献   

13.
α-Amylase was extracted and purified from soybean seeds to apparent homogeneity by affinity precipitation. The homogeneous enzyme preparation was immobilized on gelatin matrix using glutaraldehyde as an organic hardener. Response surface methodology (RSM) and 3-level-3-factor Box–Behnken design was employed to evaluate the effects of immobilization parameters, such as gelatin concentration, glutaraldehyde concentration and hardening time on the activity of immobilized α-amylase. The results showed that 20% gelatin (w/v), 10% glutaraldehyde (v/v) and 1 h hardening time yielded an optimum immobilization of 82.5%.  相似文献   

14.
Surfactants were used to permeabilize cells of Pseudomonas putida KT2440 so as to maximize retention of the arginine deiminase (ADI) activity within the treated cells. The surfactants cetyltrimethylammoniumbromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X100 were tested separately. Statistical models were developed for the effects on the ADI activity of the following factors: the concentration of the surfactant, the length of the treatment period and the concentration of the cells. For all surfactants, the concentration of cells was the most significant factor in influencing permeabilization. All permeabilization treatments used mild conditions (pH 7, 37 °C). The permeabilized cells were immobilized in alginate beads for the biotransformation of arginine to citrulline. The optimal conditions for immobilization and biotransformation were as follows: 2% (w/v, g/100 mL) sodium alginate, 100 g/L of treated cells, 40 mM arginine, pH 6.0, a temperature of 35 °C and an agitation speed of 150 rpm. The immobilized biocatalyst retained nearly 90% of its initial activity after nine cycles of repeated use in batch operations. In contrast, the freely suspended cells were barely active after the second use cycle.  相似文献   

15.
Recombinant Escherichia coli whole cells harboring Bacillus licheniformis l-arabinose isomerase (BLAI) were immobilized with alginate. The operational conditions for immobilization were optimized with response surface methodology. Optimal alginate concentration, Ca2+ concentration, and cell mass loading were 1.8% (w/v), 0.1 M, and 44.5 g L−1, respectively. The interactions between Ca2+ concentration, alginate concentration, and initial cell mass were significant. After immobilization of BLAI, cross-linking with 0.1% glutaraldehyde significantly reduced cell leakage. The half-life of immobilized whole cells was 150 days, which was 50-fold longer than that of free cells. In seven repeated batches for l-ribulose production, the productivity was as high as 56.7 g L−1 h−1 at 400 g L−1 substrate concentration. The immobilized cells retained 89% of the initial yield after 33 days of reaction. Immobilization of whole cells harboring BLAI, therefore, makes a suitable biocatalyst for the production of l-ribulose, particularly because of its high stability and low cost.  相似文献   

16.
Production of β-cyclodextrin (β-CD) by Bacillus firmus strain 37 cells, immobilized by adsorption on silica–titania (SiO2/TiO2) and silica–manganese dioxide (SiO2/MnO2) matrices, was optimized for temperature, substrate concentration and initial biomass. The immobilization process was most efficient at 60 °C with 10% maltodextrin and 1.0 g of cells, resulting, after a 5-day assay, in a β-CD production of 11.7 ± 0.1 mM for cells immobilized on SiO2/TiO2 and 11.2 ± 0.1 mM in SiO2/MnO2. Entrapment in alginate gel resulted in a maximum β-CD production of 4.1 ± 0.1 mM, which was maintained constantly until the end of a 10-day assay. During this same period, free cells produced 8.3 ± 0.2 mM, and cells immobilized on SiO2/TiO2 and SiO2/MnO2, 16.7 ± 0.4 and 17.3 ± 0.5 mM, respectively. β-CD production by cells immobilized in calcium alginate in four repetitive cycles of 5 days each, showed an increase up to the third cycle, reaching 4.8 ± 0.2 mM, while production by free cells started falling from the second cycle. In this same assay, cells immobilized on SiO2/TiO2 and SiO2/MnO2, showed the best β-CD production results at the end of the first cycle, with a gradual fall occurring due to the desorption of cells thereafter.  相似文献   

17.
Synthesis of propyl-β-galactoside catalyzed by Aspergillus oryzae β-galactosidase in soluble form was optimized using response surface methodology (RSM). Temperature and 1-propanol concentration were selected as explanatory variables; yield and productivity were chosen as response variables. Optimal reaction conditions were determined by weighing the responses through a desirability function. Then, synthesis of propyl-β-galactoside was evaluated at the optimal condition previously determined, with immobilized β-galactosidase in glyoxyl-agarose and amino-glyoxyl-agarose, and with cross-linked aggregates (CLAGs). Yields of propyl-β-galactoside obtained with CLAGs, amino-glyoxyl-agarose and glyoxyl-agarose enzyme derivatives were 0.75, 0.81 and 0.87 mol/mol and volumetric productivities were 5.2, 5.6 and 5.9 mM/h, respectively, being significantly higher than the corresponding values obtained with the soluble enzyme: 0.47 mol/mol and 4.4 mM/h. As reaction yield was increased twofold with the glyoxyl-agarose derivative, this catalyst was chosen for evaluating the synthesis of propyl-β-galactoside in repeated batch operations. Then, after ten sequential batches, the efficiency of catalyst use was 115% higher than obtained with the free enzyme. Enzyme immobilization also favored product recovery, allowing catalyst reuse, and avoiding browning reactions. Propyl-β-galactoside was recovery by extraction in 90%v/v acetone with a purity higher than 99% and its synthesis was confirmed by mass spectrometry.  相似文献   

18.
Cell immobilization is one of the common techniques for increasing the overall cell concentration and productivity. Bacillus amyloliquefaciens MBL27 cells were immobilized in calcium alginate beads and it is a promising method for repeated AMP (antimicrobial protein) production. The present study aimed at determining the optimal conditions for immobilization of B. amyloliquefaciens MBL27 cells in calcium alginate beads and the operational stability for enhanced production of the AMP. AMP production with free and immobilized cells was also done. In batch fermentation, maximum AMP production (7300 AU (arbitrary units)/ml against Staphylococcus aureus) was obtained with immobilized cells in shake flasks under optimized parameters such as 3% (w/v) sodium alginate, 136?mM CaCl2 with 350 alginate beads/flask of 2.7-3.0?mm diameter. In repeated cultivation, the highest activity was obtained after the second cycle of use and approx. 94% production was noted up to the fifth cycle. The immobilized cells of B. amyloliquefaciens MBL27 in alginate beads are more efficient for the production of AMP and had good stability. The potential application of AMP as a wound healant and the need for development of economical methods for improved production make whole cell immobilization an excellent alternative method for enhanced AMP production.  相似文献   

19.
The use of free, immobilized and reused immobilized cells of the microalga Nostoc muscorum was studied for bioconversion of androst-4-en-3,17-dione (AD) to testosterone in hexadecane. Among polymers such as agar, agarose, κ-carrageenan, polyacrylamide, polyvinyl alcohol, and sodium alginate that were examined for cell entrapment, sodium alginate with a concentration of 2% (w/v) proved to be the proper matrix for N. muscorum cells immobilization. The bioconversion characteristics of immobilized whole algal cells at ranges of temperatures, substrate concentrations, and shaking speeds were studied followed by a comparison with those of free cells. The conditions were 30 °C, 0.5 g/L, and 100 rpm, respectively. The immobilized N. muscorum showed higher yield (72 ± 2.3%) than the free form (24 ± 1.3%) at the mentioned conditions. The bioconversion yield did not decrease during reuse of immobilized cells and remained high even after 5 batches of bioreactions while Na-alginate 3% was used; however, reuse of alginate 2% beads did not give a satisfactory result.  相似文献   

20.
《Process Biochemistry》2014,49(9):1393-1401
In this study, a microbial biosensor for hydrogen sulfide (H2S) detection based on Thiobacillus thioparus immobilized in a gelatin matrix was developed. The T. thioparus was immobilized via either surface adsorption on the gelatin matrix or entrapment in the matrix. The bacterial and gelatin concentration in the support were then varied in order to optimize the sensor response time and detection limit for both methods. The optimization was conducted by a statistical analysis of the measured biosensor response with various bacterial and polymer concentrations. According to our experiments with both immobilization methods, the optimized conditions for the entrapment method were found to be a gelatin concentration of 1% and an optical density of 82. For the surface adsorption method, 0.6% gelatin and an optical density of 88 were selected as the optimal conditions. A statistical model was developed based on the extent of the biosensor response in both methods of immobilization. The maximum change in the potential of the solution was 23.16 mV for the entrapment method and 34.34 mV for the surface absorption method. The response times for the entrapment and adsorption methods were 160 s and 105 s, respectively. The adsorption method is more advantageous for the development of a gas biosensor due to its shorter response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号