首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine the effects of the deletion of hydrogenase genes on nitrogenase-based photobiological H(2) productivity by heterocystous N(2)-fixing cyanobacteria, we have constructed three hydrogenase mutants from Anabaena sp. PCC 7120: hupL(-) (deficient in the uptake hydrogenase), hoxH(-) (deficient in the bidirectional hydrogenase), and hupL(-)/ hoxH(-) (deficient in both genes). The hupL(-) mutant produced H(2) at a rate four to seven times that of the wild-type under optimal conditions. The hoxH(-) mutant produced significantly lower amounts of H(2) and had slightly lower nitrogenase activity than wild-type. H(2) production by the hupL(-)/ hoxH(-) mutant was slightly lower than, but almost equal to, that of the hupL(-) mutant. The efficiency of light energy conversion to H(2) by the hupL(-) mutant at its highest H(2) production stage was 1.2% at an actinic visible light intensity of 10 W/m(2) (PAR) under argon atmosphere. These results indicate that deletion of the hupL gene could be employed as a source for further improvement of H(2) production in a nitrogenase-based photobiological H(2) production system.  相似文献   

2.
Controlling the light energy and major nutrients is important for high cell density culture of cyanobacterial cells. The growth phase of Anabaena variabilis can be divided into an exponential growth phase and a deceleration phase. In this study, the cell growth in the deceleration phase showed a linear growth pattern. Both the period of the exponential growth phase and the average cell growth rate in the deceleration phase increased by controlling the light intensity. To control the light intensity, the specific irradiation rate was maintained above 10 micromol/s/g dry cell by increasing the incident light intensity stepwise. The final cell density increased by controlling the nutrient supply. For the control of the nutrient supply, nitrate, phosphate, and sulfate were intermittently added based on the growth yield, along with the combined control of light intensity and nutrient concentration. Under these control conditions, both final cell concentration and cell productivity increased, to 8.2 g/l and 1.9 g/l/day, respectively.  相似文献   

3.

Background

Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase.

Results

An engineered strain lacking a functional uptake hydrogenase (?hupS) produced about 4-folds more hydrogen than the wild type strain. Moreover, the ?hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ?hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ?hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ?hupS strain.

Conclusions

Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.
  相似文献   

4.
Bacteria show remarkable adaptability under several stressful conditions by shifting themselves into a dormant state. Less is known, however, about the mechanism underlying the cell transition to dormancy. Here, we report that the transition to dormant states is mediated by one of the major toxin-antitoxin systems, RelEB, in a cell density-dependent manner in Escherichia coli K-12 MG1655. We constructed a strain, IKA121, which expresses the toxin RelE in the presence of rhamnose and lacks chromosomal relBE and rhaBAD. With this strain, we demonstrated that RelE-mediated dormancy is enhanced at high cell densities compared to that at low cell densities. The initiation of expression of the antitoxin RelB from a plasmid, pCA24N, reversed RelE-mediated dormancy in bacterial cultures. The activation of RelE increased the appearance of persister cells against β-lactams, quinolones, and aminoglycosides, and more persister cells appeared at high cell densities than at low cell densities. Further analysis indicated that amino acid starvation and an uncharacterized extracellular heat-labile substance promote RelE-mediated dormancy. This is a first report on the induction of RelE-mediated dormancy by high cell density. This work establishes a population-based dormancy mechanism to help explain E. coli survival in stressful environments.  相似文献   

5.
Our previous attempt to model the stationary phase of production-scale hollow-fiber bioreactors using a scaled-down micro hollow-fiber bioreactor resulted in a predicted antibody production rate that was three- to fourfold lower than the actual value (Gramer and Poeschl, 2000). Medium limitations were suspected as the reason for the discrepancy. In this study, various increases in medium feed rate were implemented in the micro bioreactor by increasing the diameter of the silicone tubing that houses the hollow fibers. Because larger diameter tubing may induce oxygen limitations, we also explored the effect of medium recirculation to enhance oxygenation. Antibody production in the micro bioreactor increased both as a result of increased medium supply and due to medium recirculation. However, these parameters increased antibody production through two independent mechanisms. The increased medium supply resulted in a higher cell-specific antibody production rate, but not a higher viable cell density. Medium circulation resulted in the support of a higher viable cell density, but had little effect on the cell-specific secretion rate. The two mechanisms of enhanced antibody production were additive, demonstrating that simultaneous parameters can limit antibody production by this cell line in a hollow-fiber system. When the medium feed and circulation rates were increased to a volumetrically proportional scale, scale-up predictions from the micro bioreactor matched the actual data from the production-scale system to within 15%. These data demonstrate the usefulness of the micro bioreactor for characterizing cell growth and limiting mechanisms at high cell densities.  相似文献   

6.
7.
Transfer efficiencies between phycobilisomes and photosystem II antenna chlorophylls were determined on membrane fragments isolated from low and high light adapted Anabaena cells. The observed increase in energy transfer in high light adapted cells is a consequence of shorter interchromophore distances and a decrease in the number of jumps of the exciting photons. Calculation of the rates of energy transfer and the coupling energies indicate that the weak interaction inferred for energy transfer between phycobilisome and photosystem II in low light adapted cells is replaced by an intermediate interaction in high light adapted cells.Abbreviations LLA low light adapted - HLA high light adapted - PBS phycobilisome - PS photosystem  相似文献   

8.
Summary Six strains of Rhodopseudomonas capsulata were tested for their ability for anaerobic light-dependent hydrogen gas production from acetate in different incubation temperatures and light intensities.Certain strains show a higher efficiency of acetate conversion to H2 at higher temperatures and higher light intensities, others on the other hand are insensitive or even show the opposite effect.  相似文献   

9.
In previous studies we reported that polymorphonuclear cell (PMN) elastase cleaves apoB-100 of human plasma low density lipoprotein (LDL) into seven or eight large Mr fragments (1, Polacek, D., R.E. Byrne, G.M. Fless, and A.M. Scanu. 1986. J. Biol. Chem. 261: 2057-2063). In the present studies we examined the interaction of native and elastase-digested LDL (ED-LDL) with primary cultures of human monocyte-derived macrophages (HMD-M). For this purpose LDL was digested with purified PMN elastase, re-isolated by ultracentrifugation at d 1.063 g/ml to remove the enzyme, and radiolabeled with 125I. At all LDL concentrations in the medium, the degradation of 125I-labeled ED-LDL was 1.5- to 2.5-fold greater than that of 125I-labeled native LDL, and for both lipoproteins species it was further enhanced by prior incubation of the cells in autologous lipoprotein-deficient serum (ALPDS). ED-LDL incubated with HMD-M in a medium containing [14C]oleate stimulated cholesteryl [14C]oleate formation 2- to 3-fold more than native LDL. In competitive degradation experiments, unlabeled ED-LDL did not inhibit the degradation of 125I-labeled acetylated LDL, whereas it caused a 90% inhibition of the degradation of 125I-labeled native LDL. At 4 degrees C, the binding of both 125I-labeled native and 125I-labeled ED-LDL was specific and of a high affinity. At saturation (Bmax), the binding of 125I-labeled ED-LDL was 2-fold higher (68 ng/mg cell protein) than that of 125I-labeled native LDL (31 ng/mg), with Kd values of 6.5 x 10(-8) M and 2.1 x 10(-8) M, respectively. A possible explanation of the binding data was provided by electrophoretic analyses suggesting that ED-LDL was twice the size of native LDL and thus potentially capable of delivering proportionately more cholesterol to the cells. Taken together, the results indicate that 1) digestion of LDL by purified PMN elastase results in a greater mass of ED-LDL (relative to native LDL) being degraded per unit time by HMD-M; 2) uptake of ED-LDL occurs via the LDL receptor; and 3) LDL digested by PMN elastase undergoes a physical change that may be responsible for its unique interactions with HMD-M. We speculate that if this process were to occur in vivo during an inflammatory process, macrophages could acquire excess cholesterol and be transformed into foam cells which are considered to be precursors of the atherosclerotic process.  相似文献   

10.
Wang Y  Xu X 《Journal of bacteriology》2005,187(24):8489-8493
Unlike those of the wild-type strain, proheterocysts of the Anabaena sp. strain PCC 7120 hetC strain keep dividing. ftsZ, the most critical cell division gene, is up-regulated in hetC proheterocysts. Heterocyst differentiation genes hglD, hglE, patB, nifB, and xisA are no longer expressed in the hetC mutant. hetC also regulates the expression of patA, a pattern formation gene.  相似文献   

11.
In this survey plastic responses to light intensity and planting density were examined in three Lamium species (L. purpureum, L. album and L. maculatum). Low light intensity enhanced plant height, length and width of leaves, but reduced number of shoots and leaves, as well as root and shoot weights. Higher density resulted in smaller plants and leaves, but had significant effect on module number (shoots and leaves) only on older plants. The effect of light intensity on measured traits was greater than the effect of density, and consistent with predictions about plastic responses on light intensity variation. Generally, the three Lamium species differed in the magnitude but not in patterns of plasticity. However, associations of analyzed traits with fitness significantly differed among species as well as among light treatments.  相似文献   

12.
A continuous acetone-butanol-ethanol (ABE) production system with high cell density obtained by cell-recycling of Clostridium saccharoperbutylacetonicum N1-4 has been studied. In conventional continuous culture of ABE without cell-recycling, the cell concentration was below 5.2 g l(-1) and the maximum ABE productivity was only 1.85 g l(-1)h(-1) at a dilution rate of 0.20 h(-1). To obtain a high cell density at a faster rate, we concentrated the solventogenic cells of the broth 10 times by membrane filtration and were able to obtain approximately 20 g l(-1) of active cells after only 12h of cultivation. Continuous culture with cell-recycling was then started, and the cell concentration increased gradually through cultivation to a value greater than 100 g l(-1). The maximum ABE productivity of 11.0 gl(-1)h(-1) was obtained at a dilution rate of 0.85 h(-1). However, a cell concentration greater than 100 gl(-1) resulted in heavy bubbling and broth outflow, which made it impossible to carry out continuous culture. Therefore, to maintain a stable cell concentration, cell-bleeding was performed together with cell-recycling. At dilution rates of 0.11h(-1) and above for cell-bleeding, continuous culture with cell-recycling could be operated for more than 200 h without strain degeneration and the overall volumetric ABE productivity of 7.55 gl(-1)h(-1) was achieved at an ABE concentration of 8.58 gl(-1).  相似文献   

13.
Thermal inhibition and photoinhibition of plants, which may occur simultaneously in nature, were investigated to determine whether the two causal stresses interact and to characterize any interactions that occurred. Photosynthetic rates of wheat (Triticum aestivum L. cv Len) seedlings declined gradually after temperature treatment increased from 22 to 42°C or after photosynthetically active radiation (PAR) treatment increased from 450 to 2000 micromoles per square meter per second and fell rapidly after the stresses were simultaneously imposed. Stomatal conductance and internal CO2 were affected little, indicating the interaction occurred in chloroplasts. Thylakoid whole chain electron transport, quantum yield, and saturating PAR intensity were decreased by high temperature and an additional amount by high PAR treatments. Photosystem reactions involving water oxidation were inhibited more than other reactions, and chlorophyll fluorescence transients indicated most inhibition was on the photooxidizing side of photosystem II. Injury was influenced little by the order in which the stresses were imposed and was always most severe when they were combined. Release of proteins from thylakoid membranes was not detected. Lability to the stresses was lowest in thylakoids from vegetative stage plants and increased as plants matured. We concluded that thermal injury is accentuated by high PAR, the two stresses may act at a common site near the water oxidizing complex, and their interaction may be involved in photosynthetic decline during adverse conditions.  相似文献   

14.
15.
High irradiance and moderate heat inhibit the activity of the photosynthetic apparatus of oat (Avena sativa L.) leaves. The incubation of oat leaves under high light intensity in conjunction with high temperatures strongly decreased the maximal quantum yield of photosystem (PS) II, indicating the close synergistic effect of both stress factors on PS II inhibition and the subsequent irreversible damage to the photosynthetic apparatus. The PS I A/B protein levels remained similar to control values in leaves incubated under high light intensity or moderate heat, and decreased only when both stress factors were simultaneously applied. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed an increase in the amount of both proteins in response to high light intensity and/or heat treatments. In addition, these stress treatments were seen to stimulate the activity of electron donation by NADPH and ferredoxin to plastoquinone, the PTOX activity in plastoquinone oxidation and the NADH DH activity in thylakoid membranes. Incubation with n-propyl gallate (an inhibitor of PTOX) inhibited the increase of NDH-K and PTOX levels under high light intensity and heat, and slightly stimulated the activity of electron donation by NADPH and ferredoxin to plastoquinone. Antimycin A (an inhibitor of cyclic electron flow) increased the NADH DH activity and preserved the levels of NDH-K and PTOX in thylakoid membranes from leaves incubated under high light intensity and heat. The up-regulation of the PTOX and the thylakoidal NADH DH complex under these stress conditions supports a role for chlororespiration in the protection against high irradiance and moderate heat.  相似文献   

16.
The photoinduced resonance EEG response in the occipital area (O1 and O2) of right-handed men during 12-s intermittent photic stimulation was studied as a function of flash frequency (6, 10, or 16 Hz) and intensity (5 levels from 0.05 to 0.7 J). The EEG power in the narrow band coinciding with stimulation frequency was FFT-extracted in 3-s intervals before, during, and after each stimulation. It was found that increase in flash intensity was accompanied by an enhancement of the resonance EEG response and decrease in time of reaching its maximal value. These changes were to a greater extent characteristic for the right hemisphere. The low-intensity stimulation induced more pronounced resonance effects in the left hemisphere, whereas the high-intensity flashes to a greater extent involved the right hemisphere. The asymmetry of the EEG response to stimulation of the middle intensity was slight, and the time of reaching the maximal level of the resonance activation was about 6-8 s. A relatively high level of the resonance EEG response was observed during stimulation with the frequency of 10 Hz, even in case of its minimal intensity. The most pronounced resonance EEG response was induced in the right occipital area by the high-intensity 16-Hz stimulation. The enhanced sensitivity of the right hemisphere to intensity of flashes is interpreted as an indication of interhemispheric differences in nonspecific adaptive mechanisms of the brain.  相似文献   

17.
18.
Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent.  相似文献   

19.
Zou N  Zhou B  Li B  Sun D  Zeng C 《Biomolecular engineering》2003,20(4-6):281-284
An on-line controlled 7 l sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degrees C, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 microE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor.  相似文献   

20.
Media containing xylose and/or glucose were tested utilizing Zymomonas mobilis or Saccharomyces diastaticus and Pichia stipitis. The best fermentation results were obtained in separated glucose (180 g/litre) and xylose (80 g/litre) fermentations utilizing Zymomonas mobilis and Pichia stipitis strains, respectively. In these conditions, the maximum ethanol concentrations achieved were 86·2 g/litre and 29 g/litre, respectively. The complete conversion of a glucose and xylose mixture (50 g/litre) was obtained using a respiratory deficient mutant of Saccharomyces diastaticus co-cultivated with Pichia stipitis in continuous culture. Using the co-culture process, the maximum ethanol concentration was 21·5 g/litre (Yp/s=0·45 g/g) and the maximum volumetric ethanol productivity was 4·3 g/(litre × h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号