首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing “plus” ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.  相似文献   

2.
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.  相似文献   

3.
The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with beta3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)-/- OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP-/- OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP-/- OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.  相似文献   

4.
Macrophages have the ability to fuse and form multinucleated giant cells such as Osteoclast (OCs) and FBGCs. Osteoclast stimulatory transmembrane protein (OC‐STAMP) is an important cell surface protein involved in the formation of OCs. This study sought to determine if OC‐STAMP also regulates formation of FBGCs using expression analysis and subsequent inhibition studies. qPCR and Western blot analysis showed that OC‐STAMP expression is significantly higher in FBGCs compared to control monocytes (P < 0.05). Four days following cell culture, OCs were positive for TRAP and F‐actin ring formation, but FBGCs were not. In contrast, FBGCs were positive for TRAP and showed podosome belts comprised of F‐actin on Day 8. FBGCs were subsequently plated onto dentine, but despite presenting some morphologic features of OCs (OC‐STAMP expression, TRAP reactivity, and podosome belts) they failed to resorb bone. To evaluate a role for OC‐STAMP in FBGCs, we inhibited this cell surface protein with anti‐OC‐STAMP antibody and observed that cell fusion and podosome belt formation was inhibited in both OCs and FBGCs. Our data support the hypothesis that OC‐STAMP is a regulatory molecule for FBGCs; and that they are functionally distinct from OCs, despite similarities in gene expression profile, podosome belt formation, and TRAP expression. J. Cell. Biochem. 114: 1772–1778, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Podosomes, important structures for adhesion and extracellular matrix degradation, are claimed to be involved in cell migration. In addition, podosomes are also reported to be of importance in tissue remodelling, e.g., in osteoclast-mediated bone resorption. Podosomes are highly dynamic actin-filament scaffolds onto which proteins important for their function, such as matrix metallo-proteases and integrins, attach. The dynamics of the podosomes require the action of many proteins regulating actin assembly and disassembly. One such protein, gelsolin, which associates to podosomes, has been reported to be important for podosome formation and function in osteoclasts. However, podosome-like structures have been reported in gelsolin-deficient dendritic cells, but the identity of these structures was not confirmed, and their dynamics and function was not investigated. Like many other cells, dendritic cells of the immune system also form matrix degrading podosomes. In the present study, we show that dendritic cells form podosomes independently of gelsolin, that there are no major alterations in their dynamics of formation and disassembly, and that they exhibit matrix-degrading function. Furthermore, we found that gelsolin is not required for TLR4-induced podosome disassembly. Thus, the actin cytoskeleton of podosomes involved in dendritic cell extracellular matrix degradation appears to be regulated differently than the cytoskeleton in podosomes of osteoclasts mediating bone resorption.  相似文献   

6.
Osteoclasts are essential for bone dynamics and calcium homeostasis. The cells form a tight seal on the bone surface, onto which they secrete acid and proteases to resorb bone. The seal is associated with a ring of actin filaments. Cortactin, a c-Src substrate known to promote Arp2/3-mediated actin assembly in vitro, is expressed in osteoclasts and localizes to the sealing ring. To address the role of cortactin and actin assembly in osteoclasts, we depleted cortactin by RNA interference. Cortactin-depleted osteoclasts displayed a complete loss of bone resorption with no formation of sealing zones. On nonosteoid surfaces, osteoclasts flatten with a dynamic, actin-rich peripheral edge that contains podosomes, filopodia, and lamellipodia. Cortactin depletion led to a specific loss of podosomes, revealing a tight spatial compartmentalization of actin assembly. Podosome formation was restored in cortactin-depleted cells by expression of wild-type cortactin or a Src homology 3 point mutant of cortactin. In contrast, expression of a cortactin mutant lacking tyrosine residues phosphorylated by Src did not restore podosome formation. Cortactin was found to be an early component of the nascent podosome belt, along with dynamin, supporting a role for cortactin in actin assembly.  相似文献   

7.
Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization.  相似文献   

8.
Osteoclasts are large monocyte-derived multinucleated cells whose function is to resorb bone, i.e. a mineralised extracellular matrix. They exhibit two different actin cytoskeleton organisations according to their substratum. On non-mineralised substrates they form canonical podosomes, but on mineralised extracellular matrices they form a sealing zone. Podosomes consist of two functionally different actin subdomains: a podosome core, probably made of branched actin organised through a CD44 transmembrane receptor, and an actin cloud of actin cables organised around alphavbeta3 integrin. During osteoclast differentiation, podosome patterning is highly dynamic, and we propose that it ends up in a sealing zone in mature bone-resorbing osteoclasts after a complete reorganisation of the two subdomains. In addition to matrix degradation, osteoclasts share with tumour cells the ability to transmigrate through cell layers and-for that purpose-can arrange their cytoskeleton in long protrusions reminiscent of invadopodia. In this review, we discuss the relationships between podosomes and sealing zone, comparing their structures, their molecular composition and their abilities to degrade extracellular matrices. The dynamic actin remodelling in osteoclasts appears then as a major factor to understand their unusual abilities reminiscent of metastatic tumour cells.  相似文献   

9.
Podosomes are actin-rich adhesion structures typical for monocytic cells and are implicated in migration and invasion. Major modes of podosome regulation include RhoGTPase signaling and actin regulatory pathways. However, it is not clearly understood how these signals induce highly localized changes in podosome formation and dynamics. Here, we show that the RhoGTPase effector PAK4, a member of the p21 associated kinase family, and its regulator alphaPIX (PAK-interacting exchange factor), are central to podosome formation in primary human macrophages. Immunofluorescence, biochemical and microarray data indicate that PAK4 acts as physiological regulator of podosomes in this system. Accordingly, transfection of a specific shRNA, as well as expression of PAK4 truncation mutants, resulted in reduced numbers of podosomes per cell. Moreover, expression of kinase active or inactive PAK4 mutants enhanced or reduced the size of individual podosomes, respectively, indicating a modulatory influence of PAK4 kinase activity on podosome size. Similar to the results gained with PAK4, cellular/overexpressed PIX was shown to be closely associated with podosomes. Moreover, both overexpression of alphaPIX wt and a mutant lacking the SH3 domain led to coalescence of podosomes. In sum, we propose that PAK4 and alphaPIX can induce highly localized changes in actin dynamics and thereby regulate size and number of podosomes in primary human macrophages.  相似文献   

10.
Podosomes, small actin-based adhesion structures, differ from focal adhesions in two aspects: their core structure and their ability to organize into large patterns in osteoclasts. To address the mechanisms underlying these features, we imaged live preosteoclasts expressing green fluorescent protein-actin during their differentiation. We observe that podosomes always form inside or close to podosome groups, which are surrounded by an actin cloud. Fluorescence recovery after photobleaching shows that actin turns over in individual podosomes in contrast to cortactin, suggesting a continuous actin polymerization in the podosome core. The observation of podosome assemblies during osteoclast differentiation reveals that they evolve from simple clusters into rings that expand by the continuous formation of new podosomes at their outer ridge and inhibition of podosome formation inside the rings. This self-organization of podosomes into dynamic rings is the mechanism that drives podosomes at the periphery of the cell in large circular patterns. We also show that an additional step of differentiation, requiring microtubule integrity, stabilizes the podosome circles at the cell periphery to form the characteristic podosome belt pattern of mature osteoclasts. These results therefore provide a mechanism for the patterning of podosomes in osteoclasts and reveal a turnover of actin inside the podosome.  相似文献   

11.
Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end-enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells.  相似文献   

12.
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.  相似文献   

13.
The bone resorption function of osteoclasts is dependent on the integrity of the actin cytoskeleton. Depending on the substratum upon which the osteoclasts are spread, there are two different structures of actin known as podosomes and the sealing zone. To understand the specific properties and relationship of podosomes and the sealing zone, we used live-cell imaging of cultured osteoclasts. When cultured on extracellular matrix components, podosomes in these cells are organized in higher-ordered structures. These are clustered podosomes that will arrange later into dynamic short-lived rings which finally expand to the cell periphery to form a stable long-lived podosome belt in fully differentiated cells. In osteoclasts, this specific podosome patterning is under the control of microtubules (MTs). Indeed, nocodazole treatment does not affect podosome formation but only the transition between clusters/rings and belts. During this transition, MTs accumulate a specific post-translational modification of tubulin by acetylation. This process is repressed by an inhibitory pathway involving the GTPase Rho, its effector mDIA2 and the recently discovered tubulin deacetylase HDAC6. The specific function of this acetylation is still unknown but is also observed in active osteoclasts forming a sealing zone which is also MT dependent. Thus, it appears that the podosome belt is reminiscent of the sealing zone. Indeed, podosome belts and sealing zones are characterized by their overall stability. Despite their similar behavior, a sealing zone is not formed by fusion of podosomes. The formation of a podosome belt or a sealing zone is controlled by the external environment. Indeed, only the bone mineral fraction, known as apatite crystal, is able to induce sealing zone formation in mature osteoclasts. Contact of osteoclasts with apatite stimulates the non-receptor tyrosine kinase c-Src and the GTPase Rho in order to form the sealing zone. As we will discuss in this review, it appears that podosomes and the sealing zone are strikingly linked.  相似文献   

14.
Self-organized podosomes are dynamic mechanosensors   总被引:1,自引:0,他引:1  
Podosomes are self-organized, dynamic, actin-containing structures that adhere to the extracellular matrix via integrins [1-5]. Yet, it is not clear what regulates podosome dynamics and whether podosomes can function as direct mechanosensors, like focal adhesions [6-9]. We show here that myosin-II proteins form circular structures outside and at the podosome actin ring to regulate podosome dynamics. Inhibiting myosin-II-dependent tension dissipated podosome actin rings before dissipating the myosin-ring structure. As podosome rings changed size or shape, tractions underneath the podosomes were exerted onto the substrate and were abolished when myosin-light-chain activity was inhibited. The magnitudes of tractions were comparable to those generated underneath focal adhesions, and they increased with substrate stiffness. The dynamics of podosomes and of focal adhesions were different. Torsional tractions underneath the podosome rings were generated with rotations of podosome rings in a nonmotile, nonrotating cell, suggesting a unique feature of these circular structures. Stresses applied via integrins at the apical surface directly displaced podosomes near the basal surface. Stress-induced podosome displacements increased nonlinearly with applied stresses. Our results suggest that podosomes are dynamic mechanosensors in which interactions of myosin tension and actin dynamics are crucial for regulating these self-organized structures in living cells.  相似文献   

15.
16.
Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption.  相似文献   

17.
Podosomes are small, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. They comprise a protrusive actin core module and an adhesive ring module composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. Furthermore, podosomes are associated with an actin network and often organize into large clusters. Recent results from our laboratory and others have shed new light on podosome structure and dynamics, suggesting a revision of the classical “core-ring” model. Also, these studies demonstrate that the adhesive and protrusive module are functionally linked by the actin network likely facilitating mechanotransduction as well as providing feedback between these two modules. In this commentary, we briefly summarize these recent advances with respect to the knowledge on podosome structure and discuss force distribution mechanisms within podosomes and their emerging role in mechanotransduction.  相似文献   

18.
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.  相似文献   

19.
Podosomes are actin-rich adhesive foci found in several cell types, including macrophages. They have a core containing actin and actin-binding proteins and a peripheral ring of integrins and associated proteins. We show that podosomes are abundant in polarized mouse bone marrow-derived macrophages (BMM) and are found primarily in lamellae. We investigated the effects of CSF-1, which induces membrane ruffling, cell spreading, and subsequent polarization and migration, on podosome formation. CSF-1 induces a transient increase in podosome number and enhances the formation of circular arrays of podosomes. Conversely, CSF-1 withdrawal leads to a reduction in podosomes and a decrease in polarized cells. The PI 3-kinase inhibitor LY294002 induces loss of podosomes together with rapid retraction of lamellae and loss of polarity. Our results indicate that CSF-1 acts via PI 3-kinase to enhance podosome assembly and that this is linked to macrophage polarization.  相似文献   

20.
The actin cytoskeleton is essential for osteoclasts main function, bone resorption. Two different organizations of actin have been described in osteoclasts, the podosomes belt corresponding to numerous F-actin columns arranged at the cell periphery, and the sealing zone defined as a unique large band of actin. To compare the role of these two different actin organizations, we imaged osteoclasts on various substrata: glass, dentin, and apatite. Using primary osteoclasts expressing GFP-actin, we found that podosome belts and sealing zones, both very dynamic actin structures, were present in mature osteoclasts; podosome belts were observed only in spread osteoclasts adhering onto glass, whereas sealing zone were seen in apico-basal polarized osteoclasts adherent on mineralized matrix. Dynamic observations of several resorption cycles of osteoclasts seeded on apatite revealed that 1) podosomes do not fuse together to form the sealing zone; 2) osteoclasts alternate successive stationary polarized resorption phases with a sealing zone and migration, nonresorption phases without any specific actin structure; and 3) apatite itself promotes sealing zone formation though c-src and Rho signaling. Finally, our work suggests that apatite-mediated sealing zone formation is dependent on both c-src and Rho whereas apico-basal polarization requires only Rho.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号