首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The natural transformation system of Thermus thermophilus has become a model system for studies of the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter in T. thermophilus is functionally linked to type IV pili (T4P) and the major pilin PilA4 plays an essential role in both systems. However, T4P are dispensable for natural transformation. In addition to pilA4, T. thermophilus has a gene cluster encoding the three additional pilins PilA1–PilA3; deletion of the cluster abolished natural transformation but retained T4P biogenesis. In this study, we investigated the roles of single pilins PilA1, PilA2 and PilA3 in natural transformation by mutant studies. These studies revealed that each of these pilins is essential for natural transformation. Two of the pilins, PilA1 and PilA2, were found to bind dsDNA. PilA1 and PilA3 were detected in the inner membrane (IM) but not in the outer membrane (OM) whereas PilA2 was present in both membranes. All three pilins where absent in pilus fractions. This suggests that the pilins form a short DNA binding pseudopilus anchored in the IM. PilA1 was found to bind to the IM assembly platform of the DNA transporter via PilM and PilO. These data are in line with the hypothesis that a DNA binding pseudopilus is connected via an IM platform to the cytosolic motor ATPase PilF.  相似文献   

2.
The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions.  相似文献   

3.
Type IV pilus (T4P) dynamics is important for various bacterial functions including host cell interaction, surface motility, and horizontal gene transfer. T4P retract rapidly by depolymerization, generating large mechanical force. The gene that encodes the pilus retraction ATPase PilT has multiple paralogues, whose number varies between different bacterial species, but their role in regulating physical parameters of T4P dynamics remains unclear. Here, we address this question in the human pathogen Neisseria gonorrhoeae, which possesses two pilT paralogues, namely pilT2 and pilU. We show that the speed of twitching motility is strongly reduced in a pilT2 deletion mutant, while directional persistence time and sensitivity of speed to oxygen are unaffected. Using laser tweezers, we found that the speed of single T4P retraction was reduced by a factor of ≈ 2 in a pilT2 deletion strain, whereas pilU deletion showed a minor effect. The maximum force and the probability for switching from retraction to elongation under application of high force were not significantly affected. We conclude that the physical parameters of T4P are fine‐tuned through PilT2.  相似文献   

4.
Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-Å structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.  相似文献   

5.
Thermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T. thermophilus genomic sequence for conserved competence genes. These analyses resulted in the detection of 28 open reading frames (ORFs) exhibiting significant similarities to known competence proteins of gram-negative and gram-positive bacteria. Disruption of 15 selected potential competence genes led to the identification of 8 noncompetent mutants and one transformation-deficient mutant with a 100-fold reduced transformation frequency. One competence protein is similar to DprA of Haemophilus influenzae, seven are similar to type IV pilus proteins of Pseudomonas aeruginosa or Neisseria gonorrhoeae (PilM, PilN, PilO, PilQ, PilF, PilC, PilD), and another deduced protein (PilW) is similar to a protein of unknown function in Deinococcus radiodurans R1. Analysis of the piliation phenotype of T. thermophilus HB27 revealed the presence of single pilus structures on the surface of the wild-type cells, whereas the noncompetent pil mutants of Thermus, with the exception of the pilF mutant, were devoid of pilus structures. These results suggest that pili and natural transformation in T. thermophilus HB27 are functionally linked.  相似文献   

6.
Type IV pili (T4P) are dynamic surface structures that undergo cycles of extension and retraction. T4P dynamics center on the PilB and PilT proteins, which are members of the secretion ATPase superfamily of proteins. Here, we show that PilB and PilT of the T4P system in Myxococcus xanthus have ATPase activity in vitro. Using a structure-guided approach, we systematically mutagenized PilB and PilT to resolve whether both ATP binding and hydrolysis are important for PilB and PilT function in vivo. PilB as well as PilT ATPase activity was abolished in vitro by replacement of conserved residues in the Walker A and Walker B boxes that are involved in ATP binding and hydrolysis, respectively. PilB proteins containing mutant Walker A or Walker B boxes were nonfunctional in vivo and unable to support T4P extension. PilT proteins containing mutant Walker A or Walker B boxes were also nonfunctional in vivo and unable to support T4P retraction. These data provide genetic evidence that both ATP binding and hydrolysis by PilB are essential for T4P extension and that both ATP binding and hydrolysis by PilT are essential for T4P retraction. Thus, PilB and PilT are ATPases that act at distinct steps in the T4P extension/retraction cycle in vivo.  相似文献   

7.
The extreme thermophile Thermus thermophilus HB27 exhibits high frequencies of natural transformation. Although we recently reported identification of the first competence genes in Thermus, the molecular basis of DNA uptake is unknown. A pilus-like structure is assumed to be involved. Twelve genes encoding prepilin-like proteins were identified in three loci in the genome of T. thermophilus. Mutational analyses, described in this paper, revealed that one locus, which contains four genes that encode prepilin-like proteins (pilA1 to pilA4), is essential for natural transformation. Additionally, comZ, a new competence gene with no similarity to known genes, was identified. Analysis of the piliation phenotype revealed wild-type piliation of a pilA1-pilA3Δkat mutant and a comZ mutant, whereas a pilA4 mutant was found to be completely devoid of pilus structures. These findings, together with the significant similarity of PilA4 to prepilins, led to the conclusion that the T. thermophilus pilus structures are type IV pili. Furthermore, the loss of the transformation and piliation phenotype in the pilA4 mutant suggests that type IV pili are implicated in natural transformation of T. thermophilus HB27.  相似文献   

8.
Thermus thermophilus is a model strain to unravel the molecular basis of horizontal gene transfer in hot environments. Previous genetic studies led to the identification of a macromolecular transport machinery mediating DNA uptake in an energy-dependent manner. Here, we have addressed how the transporter is energized. Inspection of the genome sequence revealed four putative transport (AAA) ATPases but only the deletion of one, PilF, led to a transformation defect. PilF is similar to transport ATPases of type IV and type II secretions systems but has a unique N-terminal sequence that carries a triplicated GSPII domain. To characterize PilF biochemically it was produced in Escherichia coli and purified. The recombinant protein displayed NTPase activity with a preference for ATP. Gel filtration analyses combined with dynamic light scattering demonstrated that PilF is monodispersed in solution and forms a complex of 590 ± 30 kDa, indicating a homooligomer of six subunits. It contains a tetracysteine motif, previously shown to bind Zn2+ in related NTPases. Using atomic absorption spectroscopy, indeed Zn2+ was detected in the enzyme, but in contrast to all known zinc-binding traffic NTPases only one zinc atom was bound to the hexamer. Deletion of the four cysteine residues led to a loss of Zn2+. Nevertheless, the mutant protein retained ATPase activity and hexameric complex formation.  相似文献   

9.
Uptake of DNA from the environment into the bacterial cytoplasm is mediated by a macromolecular transport machinery that is similar in structure and function to type IV pili (T4P) and, indeed, DNA translocator and T4P share common components. One is the secretin PilQ which is assembled into homopolymeric complexes forming highly dynamic outer membrane (OM) channels mediating pilus extrusion and DNA uptake. How PilQ interacts with the motor is still enigmatic. Here, we have used biochemical and genetic techniques to study the interaction of PilQ with PilW, a unique protein which is essential for natural transformation and T4P extrusion of T. thermophilus. PilQ and PilW form high molecular mass complexes in the OM of T. thermophilus. When pilW was deleted, PilQ complexes were no longer observed but only PilQ monomers, accompanied by a loss of DNA uptake as well as a loss of T4P and twitching motility. Piliation of a ΔpilT2pilW double mutant suggests that PilW is important for stable assembly of PilQ complexes. To analyze the role of different regions of PilW, partial deletions (pilW?240, pilW?50150, pilW?163216 and pilW?216292) were generated and the effect on DNA uptake, PilQ complex formation and T4P functions such as twitching motility, biofilm formation and cell-cell interaction was studied. These studies revealed that a central disordered region in PilW is required for pilus dynamics. We propose that PilW is part of a protein network that connects the transport ATPase to drive different functions of the DNA translocator and T4P.  相似文献   

10.
A systematic genetic analysis was performed to identify the inner membrane proteins essential for type IV pilus (T4P) expression in Pseudomonas aeruginosa. By inactivating the retraction aspect of pilus function, genes essential for T4P assembly were discriminated. In contrast to previous studies in the T4P system of Neisseria spp., we found that components of the inner membrane subcomplex consisting of PilMNOP were not essential for surface pilus expression, whereas the highly conserved inner membrane protein PilC was essential. Here, we present data that PilC may coordinate the activity of cytoplasmic polymerization (PilB) and depolymerization (PilT) ATPases via their interactions with its two cytoplasmic domains. Using in vitro co-affinity purification, we show that PilB interacts with the N-terminal cytoplasmic domain of PilC. We hypothesized that PilT similarly interacts with the PilC C-terminal cytoplasmic domain. Overexpression of that domain in the wild-type protein reduced twitching motility by ∼50% compared with the vector control. Site-directed mutagenesis of conserved T4P-specific residues in the PilC C-terminal domain yielded mutant proteins that supported wild-type pilus assembly but had a reduced capacity to support twitching motility, suggesting impairment of putative PilC-PilT interactions. Taken together, our results show that PilC is an essential inner membrane component of the T4P system, controlling both pilus assembly and disassembly.  相似文献   

11.
Neisseria gonorrhoeae, the Gram-negative aetiological agent of gonorrhoea, is one of many mucosal pathogens of man that expresses competence for natural transformation. Expression of this phenotype by gonococci appears to rely on the expression of type IV pili (Tfp), but the mechanistic basis for this relationship remains unknown. During studies of gonococcal pilus biogenesis, a homologue of the PilT family of proteins, required for Tfp-dependent twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was discovered. Like the findings in these other species, we show here that gonococcal pilT mutants constructed in vitro no longer display twitching motility. In addition, we demonstrate that they have concurrently lost the ability to undergo natural transformation, despite the expression of structurally and morphologically normal Tfp. These results were confirmed by the findings that two classes of spontaneous mutants that failed to express twitching motility and transformability carried mutations in pilT. Piliated pilT mutants and a panel of pilus assembly mutants were found to be deficient in sequence-specific DNA uptake into the cell, the earliest demonstrable step in neisserial competence. The PilT-deficient strains represent the first genetically defined mutants that are defective in DNA uptake but retain Tfp expression.  相似文献   

12.
The unicellular cyanobacterium, Synechocystis sp. PCC 6803 is motile. A homologue of the PilT protein family, required for twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was found to be necessarily associated with cyanobacterial motility. The pilT1 (slr0161) mutant shows a pleotropic phenotype, defects in individual cell motility, and an increased number of long surface pili. Furthermore, the mutant loses its ability of natural competency. These findings demonstrate that PilT1 is essential for both cell motility and competency. Since the pilT gene contains a consensus ATP-binding motif (Walker boxes), the PilT protein is suggested for supplying energy for cell motility. The product of pilT1, overproduced in Escherichia coli and purified by Ni-affinity chromatography, hydrolyzes ATP in vitro.  相似文献   

13.
Bacterial surface motility works by retraction of surface-attached type IV pili. This retraction requires the PilT protein, a member of a large family of putative NTPases from type II and IV secretion systems. In this study, the PilT homologue from the thermophilic eubacterium Aquifex aeolicus was cloned, overexpressed, and purified. A. aeolicus PilT was shown to be a thermostable ATPase with a specific activity of 15.7 nmol of ATP hydrolyzed/min/mg of protein. This activity was abolished when a conserved lysine in the nucleotide-binding motif was altered. The substrate specificity was low; UTP, CTP, ATP, GTP, dATP, and dGTP served as substrates, UTP having the highest activity of these in vitro. Based on sedimentation equilibrium and size exclusion chromatography, PilT was identified as a approximately equal 5- to 6-subunit oligomer. Potential implications of the NTPase activity of PilT in pilus retraction are discussed.  相似文献   

14.
PilT is a hexameric ATPase required for type IV pilus retraction in gram-negative bacteria. Retraction of type IV pili mediates intimate attachment to and signaling in host cells, surface motility, biofilm formation, natural transformation, and phage sensitivity. We investigated the in vivo and in vitro roles of each amino acid of the distinct, highly conserved C-terminal AIRNLIRE motif in PilT. Substitution of amino acids A288, I289, L292, and I293 as well as a double substitution of R290 and R294 abolished Pseudomonas aeruginosa PilT function in vivo, as measured by a loss of surface motility and phage sensitivity. When introduced into purified Aquifex aeolicus PilT, substitutions in the AIRNLIRE motif did not disrupt ATPase activity or oligomerization. In contrast, a K136Q substitution in the broadly conserved nucleotide binding motif prevented PilT function in vivo as well as in vitro. We propose that the AIRNLIRE motif forms an amphipathic alpha helix which transmits signals between a surface-exposed protein interaction site and the ATPase core of PilT, and we recognize a potential functional homology in other type II secretion ATPases.  相似文献   

15.
A new cloning system is described, which allows the construction of large-insert fosmid libraries in Escherichia coli and the transfer of the recombinant libraries to the extreme thermophile Thermus thermophilus via natural transformation. Libraries are established in the thermophilic host by site-specific chromosomal insertion of the recombinant fosmids via single crossover or double crossover recombination at the T. thermophilus pyr locus. Comparative screening of a fosmid library constructed from genomic DNA from the thermophilic spirochaete, Spirochaeta thermophila, for clones expressing thermoactive xylanase activity revealed that 50% of the fosmids that conferred xylanase activity upon the corresponding T. thermophilus transformants did not give rise to xylanase-positive E. coli clones, indicating that significantly more S. thermophila genes are functionally expressed in T. thermophilus than in E. coli. The novel T. thermophilus host/vector system may be of value for the construction and functional screening of recombinant DNA libraries from individual thermophilic or extremely thermophilic organisms as well as from complex metagenomes isolated from thermophilic microbial communities.  相似文献   

16.
Thermus thermophilus HB27 is an extremely thermophilic eubacteria with a high frequency of natural competence. This organism is therefore often used as a thermophilic model to investigate the molecular basis of type IV pili–mediated functions, such as the uptake of free DNA, adhesion, twitching motility, and biofilm formation, in hot environments. In this study, the phosphoproteome of T. thermophilus HB27 was analyzed via a shotgun approach and high-accuracy mass spectrometry. Ninety-three unique phosphopeptides, including 67 in vivo phosphorylated sites on 53 phosphoproteins, were identified. The distribution of Ser/Thr/Tyr phosphorylation sites was 57%/36%/7%. The phosphoproteins were mostly involved in central metabolic pathways and protein/cell envelope biosynthesis. According to this analysis, the ATPase motor PilF, a type IV pili–related component, was first found to be phosphorylated on Thr-368 and Ser-372. Through the point mutation of PilF, mimic phosphorylated mutants T368D and S372E resulted in nonpiliated and nontwitching phenotypes, whereas nonphosphorylated mutants T368V and S372A displayed piliation and twitching motility. In addition, mimic phosphorylated mutants showed elevated biofilm-forming abilities with a higher initial attachment rate, caused by increasing exopolysaccharide production. In summary, the phosphorylation of PilF might regulate the pili and biofilm formation associated with exopolysaccharide production.Thermus thermophilus HB27 is a Gram-negative, rod-shaped, and extremely thermophilic eubacterium isolated from a geothermal area (1). This organism grows at temperatures up to 85 °C and has an optimal growth temperature of 70 °C. The thermostable enzymes obtained from members of the genus Thermus are of considerable interest because of their potential in research, biotechnological, and industrial applications (2, 3). In addition, T. thermophilus HB27 is a suitable laboratory model for genetic manipulation, as it is easily cultured under laboratory conditions and has a natural transformation system that is much more efficient than those of other Thermus spp. (4). Intriguingly, thermophiles are also found in biofilms, enclosed within a matrix consisting of extracellular polymeric substances, in various natural and artificial thermal environments (5, 6). Bacteria form biofilms in order to adapt and survive in harsh environments (7, 8). Over the past few decades, biofilm formation has been a major focus of microbial research and, as such, has been studied in relationship to bacterial pathogenesis, immunology, biofouling, microbial technology, and industrial applications (7, 912).Members of the genus Thermus, like many other thermophiles, have evolved two main mechanisms for thermoadaption. One is biofilm formation, which confers protection against environmental stresses such as high temperature and the presence of antibiotics (8). In previous studies, a novel exopolysaccharide, TA-1, was isolated from a T. aquaticus YT-1 biofilm, and both its primary structure and its immunological activity were determined (13). In addition, we showed that the overexpression of uridine diphosphate (UDP)-galactose-4′-epimerase (GalE), which catalyzes the reversible interconversion of UDP-galactose and UDP-glucose, in T. thermophilus HB27 increases biofilm production because of the enzyme''s involvement in an important step of exopolysaccharide (EPS)1 biosynthesis (14). The other mechanism that enables Thermus to thrive in extreme habitats is natural transformation (i.e. the ability to take up free DNA). In hot environments, natural transformation allows the horizontal exchange of genetic information between extremophiles, including of genes that promote thermoadaptation (1517). Recent studies showed that the type IV pili (T4P) on the cell surface of T. thermophilus HB27 not only are required for natural transformation (18, 19), but also mediate adhesion and twitching motility (20). Also, together with the degree of EPS production, the presence of T4P on the bacterial cell surface contributes to the regulation of biofilm formation (21). However, despite extensive research on the physiological, biochemical, and genetic traits of thermophiles, the mechanisms underlying these functions and their role in thermal adaptation have not been fully elucidated (16, 2224).Advances in the field of phosphoproteomics have come from high-resolution mass spectrometry and prokaryotic genome sequencing, which have confirmed the phosphorylation of many bacterial proteins on serine/threonine and tyrosine residues (25, 26). In surveys of phosphorylation-related functions, bacterial serine, threonine, and tyrosine phosphoproteins have been shown to regulate many physiological and adaptation processes, such as central carbon catabolism, the heat shock response, osmolarity, starvation, EPS synthesis, virulence, and sporulation (2527). These observations have been followed by more detailed, species-specific phosphoproteomics investigations, including in Bacillus subtilis (28), Escherichia coli (29), Lactococcus lactis (30), Halobacterium salinarum (31), Klebsiella pneumonia (32), Pseudomonas spp. (33), Rhodopseudomonas palustris (34), and T. thermophilus HB8 (35). In this study, the role played by the global phosphorylation network of the thermophile T. thermophilus HB27 in the physiological processes that mediate the stress responses and thermotolerance of this bacterium was examined. Specifically, we used strong cation exchange (SCX) chromatography and titanium dioxide (TiO2) (2830) enrichment to characterize the phosphoproteomic map of T. thermophilus HB27. Genetic manipulation of this strain indicated that phosphorylation of the PilF protein, which contains an ATP-binding motif (TTC1622/pilF) and drives T4P formation, is involved in both EPS production and piliation, thereby influencing the biofilm formation during thermophilic adaptation.  相似文献   

17.
A gene (comC) essential for natural transformation was identified in Acinetobacter sp. strain BD413. ComC has a typical leader sequence and is similar to different type IV pilus assembly factors. A comC mutant (T308) is not able to bind or take up DNA but exhibits a piliation phenotype indistinguishable from the transformation wild type as revealed by electron microscopy.  相似文献   

18.
Thermus thermophilus exhibits hypersensitivity to a lysine analog, (S)-2-aminoethyl-cysteine (AEC). Cosmid libraries were constructed using genomes from two AEC-resistant mutants, AT10 and AT14, and the cosmids that conferred AEC resistance on the wild-type strain were isolated. When the cosmid library for mutant AT14 was screened, two independent cosmids, conferring partial AEC resistance to the wild type, were obtained. Two cosmids carried a common genomic region from TTC0795 to TTC0810. This region contains genes encoding an ATP-binding cassette (ABC) transporter consisting of TTC0806/TTC0795, using TTC0807 as the periplasmic substrate-binding protein. Sequencing revealed that AT14 carries mutations in TTC0795 and TTC0969, causing decreases in the thermostability of the products. TTC0969 encodes the nucleotide-binding protein of a different ABC transporter consisting of TTC0967/TTC0968/TTC0969/TTC0970 using TTC0966 as the periplasmic substrate-binding protein. By similar screening for cosmids constructed for the mutant AT10, mutations were found at TTC0807 and TTC0969. Mutation in either of the transporter components gave partial resistance to AEC in the wild-type strain, while mutations of both transporters conferred complete AEC resistance. This result indicates that both transporters are involved in AEC uptake in T. thermophilus. To elucidate the mechanism of AEC uptake, crystal structures of TTC0807 were determined in several substrate-binding forms. The structures revealed that TTC0807 recognizes various basic amino acids by changing the side-chain conformation of Glu19, which interacts with the side-chain amino groups of the substrates.  相似文献   

19.
The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in many bacteria, to provide a physiological focus for the influence of gene transfer in microcystin evolution. The type IV pilus genes pilA, pilB, pilC, and pilT were shown to be expressed in M. aeruginosa PCC 7806. The purified PilT protein yielded a maximal ATPase activity of 37.5 +/- 1.8 nmol P(i) min(-1) mg protein(-1), with a requirement for Mg(2+). Heterologous expression indicated that it could complement the pilT mutant of Pseudomonas aeruginosa, but not that of the cyanobacterium Synechocystis sp. strain PCC 6803, which was unexpected. Differences in two critical residues between the M. aeruginosa PCC 7806 PilT (7806 PilT) and the Synechocystis sp. strain PCC 6803 PilT proteins affected their theoretical structural models, which may explain the nonfunctionality of 7806 PilT in its cyanobacterial counterpart. Screening of the pilT gene in toxic and nontoxic strains of Microcystis was also performed.  相似文献   

20.
PilT is a hexameric ATPase required for type IV pili (Tfp) retraction in gram-negative bacterium. Retraction of Tfp mediates intimate attachment and motility on inorganic solid surfaces. We investigated the cloning and expression of pilT and pilU genes of Acidithiobacillus ferrooxidans strains ATCC 23270, and the results indicate that PilT and PilU contain the canonical conserved AIRNLIRE and GMQTXXXXLXXL motifs that are the characteristic motifs of the PilT protein family; PilT and PilU also contain the canonical nucleotide-binding motifs, named with Walker A box (GxxGxGKT/S) and Walker B box (hhhhDE), respectively. The pilT and pilU genes were expressed to produce 37.1- and 42.0-kDa proteins, respectively, and co-transcribed induced by 10 % mineral powder. However, ATPase activity of PilT was distinctly higher than those of PilU. These results indicated that the PilT protein was the real molecular motor of Tfp, while PilU could play a key role in the assembly, modification, and twitching motility of Tfp in A. ferrooxidans. However, PilT and PilU were nonetheless interrelated in the forming and function of the molecular motor of Tfp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号