首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.  相似文献   

2.
Plant pathogens continuously evolve to evade host immune responses. During host colonization, many fungal pathogens secrete effectors to perturb such responses, but these in turn may become recognized by host immune receptors. To facilitate the evolution of effector repertoires, such as the elimination of recognized effectors, effector genes often reside in genomic regions that display increased plasticity, a phenomenon that is captured in the two‐speed genome hypothesis. The genome of the vascular wilt fungus Verticillium dahliae displays regions with extensive presence/absence polymorphisms, so‐called lineage‐specific regions, that are enriched in in planta‐induced putative effector genes. As expected, comparative genomics reveals differential degrees of sequence divergence between lineage‐specific regions and the core genome. Unanticipated, lineage‐specific regions display markedly higher sequence conservation in coding as well as noncoding regions than the core genome. We provide evidence that disqualifies horizontal transfer to explain the observed sequence conservation and conclude that sequence divergence occurs at a slower pace in lineage‐specific regions of the V. dahliae genome. We hypothesize that differences in chromatin organisation may explain lower nucleotide substitution rates in the plastic, lineage‐specific regions of V. dahliae.  相似文献   

3.
In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.  相似文献   

4.
5.
Fungal plant pathogens, such as Zymoseptoria tritici (formerly known as Mycosphaerella graminicola), secrete repertoires of effectors to facilitate infection or trigger host defence mechanisms. The discovery and functional characterization of effectors provides valuable knowledge that can contribute to the design of new and effective disease management strategies. Here, we combined bioinformatics approaches with expression profiling during pathogenesis to identify candidate effectors of Z. tritici. In addition, a genetic approach was conducted to map quantitative trait loci (QTLs) carrying putative effectors, enabling the validation of both complementary strategies for effector discovery. In planta expression profiling revealed that candidate effectors were up‐regulated in successive waves corresponding to consecutive stages of pathogenesis, contrary to candidates identified by QTL mapping that were, overall, expressed at low levels. Functional analyses of two top candidate effectors (SSP15 and SSP18) showed their dispensability for Z. tritici pathogenesis. These analyses reveal that generally adopted criteria, such as protein size, cysteine residues and expression during pathogenesis, may preclude an unbiased effector discovery. Indeed, genetic mapping of genomic regions involved in specificity render alternative effector candidates that do not match the aforementioned criteria, but should nevertheless be considered as promising new leads for effectors that are crucial for the Z. tritici–wheat pathosystem.  相似文献   

6.
Pseudoperonospora cubensis, an obligate oomycete pathogen, is the causal agent of cucurbit downy mildew, a foliar disease of global economic importance. Similar to other oomycete plant pathogens, Ps. cubensis has a suite of RXLR and RXLR-like effector proteins, which likely function as virulence or avirulence determinants during the course of host infection. Using in silico analyses, we identified 271 candidate effector proteins within the Ps. cubensis genome with variable RXLR motifs. In extending this analysis, we present the functional characterization of one Ps. cubensis effector protein, RXLR protein 1 (PscRXLR1), and its closest Phytophthora infestans ortholog, PITG_17484, a member of the Drug/Metabolite Transporter (DMT) superfamily. To assess if such effector-non-effector pairs are common among oomycete plant pathogens, we examined the relationship(s) among putative ortholog pairs in Ps. cubensis and P. infestans. Of 271 predicted Ps. cubensis effector proteins, only 109 (41%) had a putative ortholog in P. infestans and evolutionary rate analysis of these orthologs shows that they are evolving significantly faster than most other genes. We found that PscRXLR1 was up-regulated during the early stages of infection of plants, and, moreover, that heterologous expression of PscRXLR1 in Nicotiana benthamiana elicits a rapid necrosis. More interestingly, we also demonstrate that PscRXLR1 arises as a product of alternative splicing, making this the first example of an alternative splicing event in plant pathogenic oomycetes transforming a non-effector gene to a functional effector protein. Taken together, these data suggest a role for PscRXLR1 in pathogenicity, and, in total, our data provide a basis for comparative analysis of candidate effector proteins and their non-effector orthologs as a means of understanding function and evolutionary history of pathogen effectors.  相似文献   

7.
Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein secretion system (T3SS) gene cluster that has overall organization similar to that of the T3SS gene cluster of the plant pathogen Pseudomonas syringae. We also screened a collection of 30 closely related P. fluorescens strains and detected the T3SS genes in all but one of them. The Q8r1-96 genome contained ropAA and ropM type III effector genes, which are orthologs of the P. syringae effector genes hopAA1-1 and hopM1, as well as a novel type III effector gene designated ropB. These type III effector genes encoded proteins that were secreted in culture and injected into plant cells by both P. syringae and Q8r1-96 T3SSs. The Q8r1-96 T3SS was expressed in the rhizosphere, but mutants lacking a functional T3SS were not altered in their rhizosphere competence. The Q8r1-96 type III effectors RopAA, RopB, and RopM were capable of suppressing the hypersensitive response and production of reactive oxygen species, two plant immune responses.  相似文献   

8.
9.
Bacteria often coordinate virulence factors to fine‐tune the host response during infection. These coordinated events can include toxins counteracting or amplifying effects of another toxin or though regulating the stability of virulence factors to remove their function once it is no longer needed. Multifunctional autoprocessing repeats‐in toxin (MARTX) toxins are effector delivery toxins that form a pore into the plasma membrane of a eukaryotic cell to deliver multiple effector proteins into the cytosol of the target cell. The function of these proteins includes manipulating actin cytoskeletal dynamics, regulating signal transduction pathways and inhibiting host secretory pathways. Investigations into the molecular mechanisms of these effector domains are providing insight into how the function of some effectors overlap and regulate one another during infection. Coordinated crosstalk of effector function suggests that MARTX toxins are not simply a sum of all their parts. Instead, modulation of cell function by effector domains may depend on which other effector domain are co‐delivered. Future studies will elucidate how these effectors interact with each other to modulate the bacterial host interaction.  相似文献   

10.
11.
Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syringae effectors are designated Hop (Hrp outer protein) or Avr (avirulence) proteins. Some Hop proteins are considered to be extracellular T3SS helpers acting at the plant-bacterium interface. Identification of complete sets of effectors and related proteins has been enabled by the application of bioinformatic and high-throughput experimental techniques to the complete genome sequences of three model strains: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a. Several recent papers, including three in this issue of Molecular Plant-Microbe Interactions, address the effector inventories of these strains. These studies establish that active effector genes in P. syringae are expressed by the HrpL alternative sigma factor and can be predicted on the basis of cis Hrp promoter sequences and N-terminal amino-acid patterns. Among the three strains analyzed, P. syringae pv. tomato DC3000 has the largest effector inventory and P. syringae pv. syringae B728a has the smallest. Each strain has several effector genes that appear inactive. Only five of the 46 effector families that are represented in these three strains have an active member in all of the strains. Web-based community resources for managing and sharing growing information on these complex effector arsenals should help future efforts to understand how effectors promote P. syringae virulence.  相似文献   

12.
Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects the model plants Arabidopsis thaliana and tomato, causing disease symptoms characterized by necrotic lesions surrounded by chlorosis. One mechanism used by Pst DC3000 to infect host plants is the type III protein secretion system, which is thought to deliver multiple effector proteins to the plant cell. The exact number of type III effectors in Pst DC3000 or any other plant pathogenic bacterium is not known. All known type III effector genes of P. syringae are regulated by HrpS, an NtrC family protein, and the HrpL alternative sigma factor, which presumably binds to a conserved cis element (called the "hrp box") in the promoters of type III secretion-associated genes. In this study, we designed a search motif based on the promoter sequences conserved in 12 published hrp operons and putative effector genes in Pst DC3000. Seventy-three predicted genes were retrieved from the January 2001 release of the Pst DC3000 genome sequence, which had 95% genome coverage. The expression of the 73 genes was analysed by microarray and Northern blotting, revealing 24 genes/operons (including eight novel genes), the expression of which was consistently higher in hrp-inducing minimal medium than in nutrient-rich Luria-Bertani broth. Expression of all eight genes was dependent on the hrpS gene. Most were also dependent on the hrpL gene, but at least one was dependent on the hrpS gene, but not on the hrpL gene. An AvrRpt2-based type III translocation assay provides evidence that some of the hrpS-regulated novel genes encode putative effector proteins.  相似文献   

13.
Whole genome sequencing of several microbes has revealed thousands of genes of unknown function. A large proportion of these genes seem to confer subtle quantitative phenotypes or phenotypes that do not have a plate screen. We report a novel method to monitor such phenotypes, where the fitness of mutants is assessed in mixed cultures under competitive growth conditions, and the abundance of any individual mutant in the pool is followed by means of its unique feature, namely the mutation itself. A mixed population of yeast mutants, obtained through transposon mutagenesis, was subjected to selection. The DNA regions (targets) flanking the transposon, until nearby restriction sites, are then quantitatively amplified by means of a ligation-mediated PCR method, using transposon-specific and adapter-specific primers. The amplified PCR products correspond to mutated regions of the genome and serve as 'mutant DNA fingerprints' that can be displayed on a sequencing gel. The relative intensity of the amplified DNA fragments before and after selection match with the relative abundance of corresponding mutants, thereby revealing the fate of the mutants during selection. Using this method we demonstrate that UBI4, YDJ1 and HSP26 are essential for stress tolerance of yeast during ethanol production. We anticipate that this method will be useful for functional analysis of genes of any microbe amenable to insertional mutagenesis.  相似文献   

14.
Members of the Ralstonia solanacearum species complex (Rssc) cause bacterial wilt, a devastating plant disease that affects numerous economically important crops. Like other bacterial pests, Rssc injects a cocktail of effector proteins via the bacterial type III secretion system into host cells that collectively promote disease. Given their functional relevance in disease, the identification of Rssc effectors and the investigation of their in planta function are likely to provide clues on how to generate pest‐resistant crop plants. Accordingly, molecular analysis of effector function is a focus of Rssc research. The elucidation of effector function requires corresponding gene knockout strains or strains that express the desired effector variants. The cloning of DNA constructs that facilitate the generation of such strains has hindered the investigation of Rssc effectors. To overcome these limitations, we have designed, generated and functionally validated a toolkit consisting of DNA modules that can be assembled via Golden‐Gate (GG) cloning into either desired gene knockout constructs or multi‐cassette expression constructs. The Ralstonia‐GG‐kit is compatible with a previously established toolkit that facilitates the generation of DNA constructs for in planta expression. Accordingly, cloned modules, encoding effectors of interest, can be transferred to vectors for expression in Rssc strains and plant cells. As many effector genes have been cloned in the past as GATEWAY entry vectors, we have also established a conversion vector that allows the implementation of GATEWAY entry vectors into the Ralstonia‐GG‐kit. In summary, the Ralstonia‐GG‐kit provides a valuable tool for the genetic investigation of genes encoding effectors and other Rssc genes.  相似文献   

15.
Oomycete plant pathogens deliver effector proteins inside host cells to modulate plant defense circuitry and to enable parasitic colonization. These effectors are defined by a conserved motif, termed RXLR (for Arg, any amino acid, Leu, Arg), that is located downstream of the signal peptide and that has been implicated in host translocation. Because the phenotypes of RXLR effectors extend to plant cells, their genes are expected to be the direct target of the evolutionary forces that drive the antagonistic interplay between pathogen and host. We used the draft genome sequences of three oomycete plant pathogens, Phytophthora sojae, Phytophthora ramorum, and Hyaloperonospora parasitica, to generate genome-wide catalogs of RXLR effector genes and determine the extent to which these genes are under positive selection. These analyses revealed that the RXLR sequence is overrepresented and positionally constrained in the secretome of Phytophthora relative to other eukaryotes. The three examined plant pathogenic oomycetes carry complex and diverse sets of RXLR effector genes that have undergone relatively rapid birth and death evolution. We obtained robust evidence of positive selection in more than two-thirds of the examined paralog families of RXLR effectors. Positive selection has acted for the most part on the C-terminal region, consistent with the view that RXLR effectors are modular, with the N terminus involved in secretion and host translocation and the C-terminal domain dedicated to modulating host defenses inside plant cells.  相似文献   

16.
Pseudoperonospora cubensis is a biotrophic oomycete pathogen that causes downy mildew of cucurbits, a devastating foliar disease threatening cucurbit production worldwide. We sequenced P. cubensis genomic DNA using 454 pyrosequencing and obtained random genomic sequences covering approximately 14% of the genome, thus providing the first set of useful genomic sequence information for P. cubensis. Using bioinformatics approaches, we identified 32 putative RXLR effector proteins. Interestingly, we also identified 29 secreted peptides with high similarity to RXLR effectors at the N-terminal translocation domain, yet containing an R-to-Q substitution in the first residue of the translocation motif. Among these, a family of QXLR-containing proteins, designated as PcQNE, was confirmed to have a functional signal peptide and was further characterized as being localized in the plant nucleus. Internalization of secreted PcQNE into plant cells requires the QXLR-EER motif. This family has a large number of near-identical copies within the P. cubensis genome, is under diversifying selection at the C-terminal domain, and is upregulated during infection of plants, all of which are common characteristics of characterized oomycete effectors. Taken together, the data suggest that PcQNE are bona fide effector proteins with a QXLR translocation motif, and QXLR effectors are prevalent in P. cubensis. Furthermore, the massive duplication of PcQNE suggests that they might play pivotal roles in pathogen fitness and pathogenicity.  相似文献   

17.
18.
Although the lifestyles and infection strategies of plant pathogens are diverse, a prevailing feature is the use of an arsenal of secreted proteins, known as effectors, which aid in microbial infection. In the case of eukaryotic filamentous pathogens, such as fungi and oomycetes, effector proteins are typically dissimilar, at the protein sequence level, to known protein families and functional domains. Consequently, we currently have a limited understanding of how fungal and oomycete effectors promote disease. Protein biochemistry and structural biology are two methods that can contribute greatly to the understanding of protein function. Both techniques are dependent on obtaining proteins that are pure and functional, and generally require the use of heterologous recombinant protein expression systems. Here, we present a general scheme and methodology for the production and characterization of small cysteine‐rich (SCR) effectors utilizing Escherichia coli expression systems. Using this approach, we successfully produced cysteine‐rich effectors derived from the biotrophic fungal pathogen Melampsora lini and the necrotrophic fungal pathogen Parastagonospora nodorum. Access to functional recombinant proteins facilitated crystallization and functional experiments. These results are discussed in the context of a general workflow that may serve as a template for others interested in understanding the function of SCR effector(s) from their plant pathogen(s) of interest.  相似文献   

19.
The HopPtoF locus in Pseudomonas syringae pv. tomato DC3000 harbors two genes, ShcF and HopF2 (previously named ShcF(Pto) and HopF(Pto)), that encode a type III chaperone and a cognate effector protein, respectively. The HopF2 gene has a rare initiation codon, ATA that was reported to be functional only in mitochondrial genes. Here, we report that the native HopPtoF locus of DC3000 confers an avirulence function in tobacco W38 plants, indicating that the ATA start codon directs the synthesis of a functional effector. However, disruption of HopF2 in DC3000 genome did not alter the bacterial virulence in tomato plants. The HopPtoF locus displayed a measurable virulence activity in two strains of P. syringae pv. tomato when the ATA start codon was changed to ATG, and this change also elevated the avirulence function in W38 plants. HopF2 contains a putative myristoylation site. Mutational analysis indicated that this site is required for plasma membrane localization and virulence and avirulence activities of HopF2.  相似文献   

20.
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome‐wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome‐wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http:obesitygene.pbrc.edu .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号