首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaerobic metabolism of phenylalanine was studied in the denitrifying bacterium Thauera aromatica, a member of the β-subclass of the Proteobacteria. Phenylalanine was completely oxidized and served as the sole source of cell carbon. Evidence is presented that degradation proceeds via benzoyl-CoA as the central aromatic intermediate; the aromatic ring-reducing enzyme benzoyl-CoA reductase was present in cells grown on phenylalanine. Intermediates in phenylalanine oxidation to benzoyl-CoA were phenylpyruvate, phenylacetaldehyde, phenylacetate, phenylacetyl-CoA, and phenylglyoxylate. The required enzymes were detected in extracts of cells grown with phenylalanine and nitrate. Oxidation of phenylalanine to benzoyl-CoA was catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, phenylacetaldehyde dehydrogenase (NAD+), phenylacetate-CoA ligase (AMP-forming), enzyme(s) oxidizing phenylacetyl-CoA to phenylglyoxylate with nitrate, and phenylglyoxylate:acceptor oxidoreductase. The capacity for phenylalanine oxidation to phenylacetate was induced during growth with phenylalanine. Evidence is provided that α-oxidation of phenylacetyl-CoA is catalyzed by a membrane-bound enzyme. This is the first report on the complete anaerobic degradation of an aromatic amino acid and the regulation of this process. Received: 6 March 1997 / Accepted: 16 May 1997  相似文献   

2.
Mononuclear Mo-containing enzymes of the xanthine oxidase (XO) family catalyze the oxidative hydroxylation of aldehydes and heterocyclic compounds. The molybdenum active site shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. The XO family member aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is an exception as presents in its catalytically competent form an equatorial oxo ligand instead of the sulfido ligand. Despite this structural difference, inactive samples of DgAOR can be activated upon incubation with dithionite plus sulfide, a procedure similar to that used for activation of desulfo-XO. The fact that DgAOR does not need a sulfido ligand for catalysis indicates that the process leading to the activation of inactive DgAOR samples is different to that of desulfo-XO. We now report a combined kinetic and X-ray crystallographic study to unveil the enzyme modification responsible for the inactivation and the chemistry that occurs at the Mo site when DgAOR is activated. In contrast to XO, which is activated by resulfuration of the Mo site, DgAOR activation/inactivation is governed by the oxidation state of the dithiolene moiety of the pyranopterin cofactor, which demonstrates the non-innocent behavior of the pyranopterin in enzyme activity. We also showed that DgAOR incubation with dithionite plus sulfide in the presence of dioxygen produces hydrogen peroxide not associated with the enzyme activation. The peroxide molecule coordinates to molybdenum in a η2 fashion inhibiting the enzyme activity.  相似文献   

3.
The shikimate dehydrogenase (SDH) family consists of enzymes with diverse roles in secondary metabolism. The two most widespread members of the family, AroE and YdiB, function in amino acid biosynthesis and quinate catabolism, respectively. Here, we have determined the crystal structure of an SDH homolog belonging to the RifI class, a group of enzymes with proposed roles in antibiotic biosynthesis. The structure of RifI2 from Pseudomonas putida exhibits a number of distinctive features, including a substantial C-terminal truncation and an atypical mode of oligomerization. The active site of the enzyme contains substrate- and cofactor-binding motifs that are significantly different from those of any previously characterized member of the SDH family. These features are reflected in the novel kinetic properties of the enzyme. RifI2 exhibits much lower activity using shikimate as a substrate than AroE, and a strong preference for NAD+ instead of NADP+ as a cofactor. Moreover, the enzyme has only trace activity using quinate, unlike YdiB. Cocrystallization of RifI2 with NAD+ provided the opportunity to determine the mode of cofactor selectivity employed by the enzyme. We complemented this analysis by probing the role of a strictly conserved residue in the cofactor-binding domain, Asn193, by site directed mutagenesis. This study presents the first crystal structure and formal kinetic characterization of a new NAD+-dependent member of the SDH family.  相似文献   

4.
5.
Cultures of Chromatium strain D and Rhodospirillum rubrum incorporated 14C from phenylacetate-1-14C during anaerobic growth. The radioactivity in the protein fraction of cells was mainly in phenylalanine. Phenylalanine from Chromatium cells grown in phenylacetate-1-14C was labeled at carbon 2. Incorporation of phenylacetate by Chromatium was decreased in the presence of exogenous phenylalanine, and de novo synthesis of phenylalanine from bicarbonate was less in medium containing either phenylalanine or phenylacetate. These organisms, and also certain anaerobic rumen bacteria, apparently carboxylate phenylacetate to synthesize the phenylalanine carbon skeleton. The mechanism of the carboxylation is unknown; however, it appears to be dependent upon anaerobic conditions, since R. rubrum did not synthesize phenylalanine from phenylacetate during aerobic growth in the dark.  相似文献   

6.
The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 μM but only 50% at 5 mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.  相似文献   

7.
Prephenate dehydrogenase (PDH) is a bacterial enzyme that catalyzes conversion of prephenate to 4-hydroxyphenylpyruvate through the oxidative decarboxylation pathway for tyrosine biosynthesis. This enzymatic pathway exists in prokaryotes but is absent in mammals, indicating that it is a potential target for the development of new antibiotics. The crystal structure of PDH from Streptococcus mutans in a complex with NAD+ shows that the enzyme exists as a homo-dimer, each monomer consisting of two domains, a modified nucleotide binding N-terminal domain and a helical prephenate C-terminal binding domain. The latter is the dimerization domain. A structural comparison of PDHs from mesophilic S. mutans and thermophilic Aquifex aeolicus showed differences in the long loop between β6 and β7, which may be a reason for the high Km values of PDH from Streptococcus mutans.  相似文献   

8.
Growth of Desulfovibrio gigas NCIMB 9332 in mineral, vitamin-supplemented media with ethanol as substrate was strongly stimulated by the addition of tungstate (optimal level approximately 10-7 M). At suboptimal tungstate concentrations, up to 1.0 mM acetaldehyde was detected in the culture supernatant and growth was slow. Omission of both tungstate and molybdate from the media prevented growth and ethanol utilization. Tungstate-deprived cultures that were grown on lactate had much lower aldehyde dehydrogenase (benzylviologen as acceptor; BV-AIDH) levels than tungstate-supplemented cultures. These data suggest that tungstate is required for the synthesis of active BV-AIDH. The characteristics of the enzyme activities in cell-free extracts show that the BV-AIDH activity present in tungstate-supplemented cultures is not due to the recently characterized molybdenum-containing aldehyde dehydrogenase of D. gigas. Out of 13 other strains of ethanol-oxidizing, gram-negative, sulfate-reducing bacteria tested, most strains grew well with either tungstate or molybdate supplementation. In contrast to a recent report, good growth on ethanol of two D. baculatus (Desulfomicrobium) strains (DSM 1741 and DSM 1743) was observed.Abbreviations BV-AIDH Benzylviologen-linked aldehyde dehydrogenase - DCPIP-AIDH 2,6-dichlorophenolindophenol-linked aldehyde dehydrogenase - DTT dithiothreitol  相似文献   

9.
In general, eukaryotic glucose-6-phosphate dehydrogenases (G6PDHs) are structurally stabilized by NADP+. Here we show by spectrofluorometric analysis, thermal and urea denaturation, and trypsin proteolysis, that a different mechanism stabilizes the enzyme from Pseudomonas aeruginosa (PaG6PDH) (EC 1.1.1.363). The spectrofluorometric analysis of the emission of 8-anilino-1-naphthalenesulfonic acid (ANS) indicates that this stabilization is the result of a structural change in the enzyme caused by G6P. The similarity between the Kd values determined for the PaG6PDH-G6P complex (78.0 ± 7.9 μM) and the K0.5 values determined for G6P (57.9 ± 2.5 and 104.5 ± 9.3 μM in the NADP+- and NAD+-dependent reactions, respectively) suggests that the structural changes are the result of G6P binding to the active site of PaG6PDH. Modeling of PaG6PDH indicated the residues that potentially bind the ligand. These results and a phylogenetic analysis of the amino acid sequences of forty-four G6PDHs, suggest that the stabilization observed for PaG6PDH could be a characteristic that distinguishes this and other G6PDHs that use NAD+ and NADP+ from those that use NADP+ only or preferentially, such as those found in eukaryotes. This characteristic could be related to the metabolic roles these enzymes play in the organisms to which they belong.  相似文献   

10.
Phenylacetaldehyde dehydrogenase (PADH) was purified and characterized from Brevibacterium sp. KU1309, which can grow on the medium containing 2-phenylethanol as the sole carbon source. This enzyme was a homotetrameric protein with a subunit of 61 kDa. The enzyme catalyzed the oxidation of aryl (benzaldehyde, phenylacetaldehyde, 3-phenylpropionaldehyde) and aliphatic (hexanal, octanal, decanal) aldehydes to the corresponding carboxylic acids using NAD+ as the electron acceptor. The PADH activity was enhanced by several divalent cationic ions such as Mg2+, Ca2+, and Mn2+. On the other hand, it was inhibited by SH reagents (Hg2+, p-chloromercuribenzoate, iodoacetamide, and N-ethylmaleinimide). The substrate specificity of the enzyme is compared with those of various aldehyde dehydrogenases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
An aldehyde reductase catalyzing the NADPH-dependent reduction of long-chain aldehydes has been purified 690-fold from bovine cardiac muscle. Based on the results obtained during gel filtration, this enzyme has an apparent molecular weight of 34,000. The pI of the aldehyde reductase was 6.1 and the enzymatic activity had a sharp pH optimum at 6.4. The enzyme catalyzed the reduction of aromatic aldehydes and aliphatic aldehydes having eight or more carbon atoms. Short-chain aldehydes, aldoses, or ketoses or long-chain methyl ketones were not utilized as substrates by this enzyme. However, the methyl ketone, pentadecan-2-one, was a competitive inhibitor of this enzyme with an apparent Ki = 10 μm when tetradecanal was the variable substrate. The reaction was not reversible when ethanol or hexadecanol was employed as substrate, utilizing either NAD+, or NADP+ as a cofactor. The addition of 10 mm pyrazole to the incubation medium had no effect on the enzymatic activity.  相似文献   

12.
Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD+ to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD+/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD+/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD+/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD+/NADH, and pH. These distributions were calculated using physiological NAD+/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms.  相似文献   

13.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

14.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

15.
Phenylalanine transfer ribonucleic acid synthetase from Drosophila melanogaster has been purified 1400-fold over a crude 230,000g supernatant fraction. The optimum activity of the enzyme occurs at magnesium concentrations above 10 mm at 37 °C and pH 7.5. At a 50 mm Mg2+ concentration, NH4+ stimulates the ATP-PP1 exchange reaction as much as 2-fold. Ammonium chloride causes an increase in the V with no change in the Km with phenylalanine as substrate. Homologous (Drosophila) tRNA, in the presence of NH4+, further stimulates the ATP-PPi, exchange reaction but inhibits the reaction in the absence of NH4+.In the presence of its substrates the enzyme is inactivated by NEM to varying degrees depending upon the substrate or combinations of substrates used. In the presence of phenylalanine the enzyme is partially protected but both ATP and tRNA make the enzyme more susceptible to inactivation. NEM together with ATP and tRNA or all three substrates results in near-total inactivation.  相似文献   

16.
Candida guilliermondii produced β-phenethyl alcohol and β-phenyllactic acid when grown in a synthetic medium containing L-phenylalanine as sole source of nitrogen. The cell-free preparations from these cells showed the following enzymes: phenylalanine aminotransferase, phenylpyruvate decarboxylase, phenylpyruvate reductase and phenylacetaldehyde reductase. The cell-free preparations of C. guilliermondii grown in medium with ammonium sulfate, lacked these enzyme activities, indicating the inducible nature of these enzymes. The results indicate the role of β-phenylpyruvate as a key intermediate in the pathway of biosynthesis of β-phenethyl alcohol and β-phenyllactic acid from L-phenylalanine.  相似文献   

17.
Addition of cell wall fragments from Phytophthora species or cellulase from Trichoderma viride, but not pectolyase from Aspergillus japonicus, to tobacco (Nicotiana tabacum) cell suspension cultures induced the accumulation of the extracellular sesquiterpenoid capsidiol. Pulse-labeling experiments with [14C]acetate and [3H]mevalonate suggested that enzymatic steps preceding mevalonate were limiting capsidiol biosynthesis in the pectolyase-treated cell cultures. Treatment of the cell cultures with either Phytophthora cell wall fragments or cellulase induced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and sesquiterpene cyclase activities, enzymes of the sesquiterpene biosynthetic pathway, and phenylalanine ammonia lyase activity, an enzyme of the general phenylpropanoid pathway. Pectolyase treatment induced sesquiterpene cyclase and phenylalanine ammonia lyase activities, but not HMGR activity. These results corroborate the importance of inducible HMGR enzyme activity for sesquiterpene accumulation.  相似文献   

18.
Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP+ dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169 mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989 mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.  相似文献   

19.
Alcohol dehydrogenases are highly diverse enzymes catalysing the interconversion of alcohols and aldehydes or ketones. Due to their versatile specificities, these biocatalysts are of great interest for industrial applications. The adh3-gene encoding a group III alcohol dehydrogenase was isolated from the gram-positive bacterium Oenococcus oeni and was characterised after expression in the heterologous host Escherichia coli. Adh3 has been identified by genome BLASTP analyses using the amino acid sequence of 1,3-propanediol dehydrogenase DhaT from Klebsiella pneumoniae and group III alcohol dehydrogenases with known activity towards 1,3-propanediol as target sequences. The recombinant protein was purified in a two-step column chromatography approach. Crystal structure determination and biochemical characterisation confirmed that Adh3 forms a Ni2+-containing homodimer in its active form. Adh3 catalyses the interconversion of ethanol and its corresponding aldehyde acetaldyhyde and is also capable of using other alcoholic compounds as substrates, such as 1,3-propanediol, 1,2-propanediol and 1-propanol. In the presence of Ni2+, activity increases towards 1,3-propanediol and 1,2-propanediol. Adh3 is strictly dependent on NAD+/NADH, whereas no activity has been observed with NADP+/NADPH as co-factor. The enzyme exhibits a specific activity of 1.1 U/mg using EtOH as substrate with an optimal pH value of 9.0 for ethanol oxidation and 8.0 for aldehyde reduction. Moreover, Adh3 exhibits tolerance to several metal ions and organic solvents, but is completely inhibited in the presence of Zn2+. The present study demonstrates that O. oeni is a group III alcohol dehydrogenase with versatile substrate specificity, including Ni2+-dependent activity towards 1,3-propanediol.  相似文献   

20.
Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD+/NADP+ indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD+/NADP+ adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD+/NADP+ adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号