首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinesis is the process of physical cleavage at the end of cell division; it proceeds by ingression of an acto-myosin furrow at the equator of the cell. Its failure leads to multinucleated cells and is a possible cause of tumorigenesis. Here, we calculate the full dynamics of furrow ingression and predict cytokinesis completion above a well-defined threshold of equatorial contractility. The cortical acto-myosin is identified as the main source of mechanical dissipation and active forces. Thereupon, we propose a viscous active nonlinear membrane theory of the cortex that explicitly includes actin turnover and where the active RhoA signal leads to an equatorial band of myosin overactivity. The resulting cortex deformation is calculated numerically, and reproduces well the features of cytokinesis such as cell shape and cortical flows toward the equator. Our theory gives a physical explanation of the independence of cytokinesis duration on cell size in embryos. It also predicts a critical role of turnover on the rate and success of furrow constriction. Scaling arguments allow for a simple interpretation of the numerical results and unveil the key mechanism that generates the threshold for cytokinesis completion: cytoplasmic incompressibility results in a competition between the furrow line tension and the cell poles’ surface tension.  相似文献   

2.
Different models for animal cell cytokinesis posit that the stiffness of the equatorial cortex is either increased or decreased relative to the stiffness of the polar cortex. A recent work has suggested that the critical cytokinesis signaling complex centralspindlin may reduce the stiffness of the equatorial cortex by inactivating the small GTPase Rac. To determine if such a reduction occurs and if it depends on centralspindlin, we devised a method to estimate cortical bending stiffness with high spatio-temporal resolution from in vivo cell shapes. Using the early Caenorhabditis elegans embryo as a model, we show that the stiffness of the equatorial cell surface is reduced during cytokinesis, whereas the stiffness of the polar cell surface remains stiff. The equatorial reduction of stiffness was compromised in cells with a mutation in the gene encoding the ZEN-4/kinesin-6 subunit of centralspindlin. Theoretical modeling showed that the absence of the equatorial reduction of stiffness could explain the arrest of furrow ingression in the mutant. By contrast, the equatorial reduction of stiffness was sufficient to generate a cleavage furrow even without the constriction force of the contractile ring. In this regime, the contractile ring had a supportive contribution to furrow ingression. We conclude that stiffness is reduced around the equator in a centralspindlin-dependent manner. In addition, computational modeling suggests that proper regulation of stiffness could be sufficient for cleavage furrow ingression.  相似文献   

3.
Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex) by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.  相似文献   

4.
Cytokinesis in animal cells is accomplished by the active constriction of the equatorial regions of a cell by an actomyosin-containing contractile ring. The mitotic apparatus specifies the position and orientation of the furrow such that the mitotic spindle is always bisected. Global cortical contractions occur in the cortex of a cell prior to cytokinesis that are independent of the presence of the mitotic apparatus. It was proposed some years ago that the asters of the mitotic apparatus could act to relax the preformed cortical tension in their vicinity. This would produce a differential in tension between the equatorial regions and the adjacent regions of the cortex so that the equatorial regions would contract, forming a cleavage furrow. It can be shown that, as it stands, this theory cannot explain cleavage. However, if cortical contractile elements are assumed to be laterally mobile in the plane of the cortex, then the astral relaxation theory can account for many of the aspects of cleavage, including the formation of the contractile ring. Similar schemes may account for the behaviour of the lamellapodia of motile cells.  相似文献   

5.
The actin cross-linking protein, α-actinin, plays a crucial role in mediating furrow ingression during cytokinesis. However, the mechanism by which its dynamics are regulated during this process is poorly understood. Here we have investigated the role of calcium sensitivity of α-actinin in the regulation of its dynamics by generating a functional calcium-insensitive mutant (EFM). GFP-tagged EFM (EFM-GFP) localized to the equatorial regions during cell division. However, the maximal equatorial accumulation of EFM-GFP was significantly smaller in comparison to α-actinin-GFP when it was expressed in normal cells and cells depleted of endogenous α-actinin. No apparent defects in cytokinesis were observed in these cells. However, F-actin levels at the equator were significantly reduced in cells expressing EFM-GFP as compared with α-actinin-GFP at furrow initiation but were recovered during furrow ingression. These results suggest that calcium sensitivity of α-actinin is required for its equatorial accumulation that is crucial for the initial equatorial actin assembly but is dispensable for cytokinesis. Equatorial RhoA localization was not affected by EFM-GFP overexpression, suggesting that equatorial actin assembly is predominantly driven by the RhoA-dependent mechanism. Our observations shed new light on the role and regulation of the accumulation of pre-existing actin filaments in equatorial actin assembly during cytokinesis.  相似文献   

6.
The involvement of myosin II in cytokinesis has been demonstrated with microinjection, genetic, and pharmacological approaches; however, the exact role of myosin II in cell division remains poorly understood. To address this question, we treated dividing normal rat kidney (NRK) cells with blebbistatin, a potent inhibitor of the nonmuscle myosin II ATPase. Blebbistatin caused a strong inhibition of cytokinesis but no detectable effect on the equatorial localization of actin or myosin. However, whereas these filaments dissociated from the equator in control cells during late cytokinesis, they persisted in blebbistatin-treated cells over an extended period of time. The accumulation of equatorial actin was caused by the inhibition of actin filament turnover, as suggested by a 2-fold increase in recovery half-time after fluorescence photobleaching. Local release of blebbistatin at the equator caused localized accumulation of equatorial actin and inhibition of cytokinesis, consistent with the function of myosin II along the furrow. However, treatment of the polar region also caused a high frequency of abnormal cytokinesis, suggesting that myosin II may play a second, global role. Our observations indicate that myosin II ATPase is not required for the assembly of equatorial cortex during cytokinesis but is essential for its subsequent turnover and remodeling.  相似文献   

7.
INTRODUCTION: Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasma membrane. Discerning how this integrated network operates is essential for understanding cytokinesis contractility and shape control. Here, we analyzed the cytoskeletal network that drives furrow ingression in Dictyostelium. RESULTS: We establish that the actin polymers are assembled into a meshwork and that myosin-II does not assemble into a discrete ring in the Dictyostelium cleavage furrow of adherent cells. We show that myosin-II generates regional mechanics by increasing cleavage furrow stiffness and slows furrow ingression during late cytokinesis as compared to myoII nulls. Actin crosslinkers dynacortin and fimbrin similarly slow furrow ingression and contribute to cell mechanics in a myosin-II-dependent manner. By using FRAP, we show that the actin crosslinkers have slower kinetics in the cleavage furrow cortex than in the pole, that their kinetics differ between wild-type and myoII null cells, and that the protein dynamics of each crosslinker correlate with its impact on cortical mechanics. CONCLUSIONS: These observations suggest that myosin-II along with actin crosslinkers establish local cortical tension and elasticity, allowing for contractility independent of a circumferential cytoskeletal array. Furthermore, myosin-II and actin crosslinkers may influence each other as they modulate the dynamics and mechanics of cell-shape change.  相似文献   

8.
Owing to the rapid advances in genomic, proteomic and imaging technologies, the field of cytokinesis has seen rapid advances during the past decade. However, the basic model for the early stage of ingression, known as the contractile ring hypothesis, remains largely unchanged. From recent observations, it is becoming clear that early cytokinesis of animal cells involves a more extensive set of events, both temporally and spatially, than what is encompassed by the original contractile ring hypothesis. Activities relevant to cytokinesis, such as cortical contraction, can initiate well before onset of anaphase. Furthermore, equatorial ingression can involve multiple events in different regions of the cortex, including the establishment of anterior-posterior polarity, the modulation of cortical deformability, the expansion and compression of the cell cortex, and forces directed towards the interior of the cell or away from the equator. In this article (which is part of the Cytokinesis series), I evaluate critically key observations on when, where and how early ingression of animal cells takes place.  相似文献   

9.
BACKGROUND: The assembly of an F-actin- and myosin-II-containing contractile ring (CR) is required for cytokinesis in eukaryotic cells. Interactions between myosin II and actin in the ring are believed to generate the force that constricts the cell into two daughters. The mechanism(s) that contribute to the spatially and temporally regulated assembly and disassembly of the CR at the cell equator are poorly understood. RESULTS: We generated an LLCPK1 epithelial cell line that stably expresses GFP-actin. Live confocal imaging showed accumulation of GFP-actin in the equatorial cortex from late anaphase through cytokinesis. Fluorescence recovery after photobleaching (FRAP) experiments showed that actin in the CR is highly dynamic (t(1/2) = 26 s). In some cells, movement of GFP-actin toward the equatorial region was observed and contributed to FRAP. Blocking actin dynamic turnover with jasplakinolide demonstrates that dynamic actin is required for CR formation and cytokinesis. To test the role of myosin II in actin turnover and transport during CR formation, we inhibited myosin light-chain kinase with ML7 and myosin II ATPase activity with blebbistatin. Inhibition of myosin light-chain phosphorylation resulted in clearance of GFP-actin from the equatorial region, a reduction in myosin II in the furrow, and inhibition of cytokinesis. Treatment with blebbistatin did not block CR formation but reduced FRAP of GFP-actin and prevented completion of cytokinesis. CONCLUSIONS: These results demonstrate that the majority of actin in the CR is highly dynamic and establish novel roles for myosin II in the retention and dynamic turnover of actin in the CR.  相似文献   

10.
Cytokinesis requires a complex network of equatorial and global proteins to regulate cell shape changes. Here, using interaction genetics, we report the first characterization of a novel protein, enlazin. Enlazin is a natural fusion of two canonical classes of actin-associated proteins, the ezrin-radixin-moesin family and fimbrin, and it is localized to actin-rich structures. A fragment of enlazin, enl-tr, was isolated as a genetic suppressor of the cytokinesis defect of cortexillin-I mutants. Expression of enl-tr disrupts expression of endogenous enlazin, indicating that enl-tr functions as a dominant-negative lesion. Enlazin is distributed globally during cytokinesis and is required for cortical tension and cell adhesion. Consistent with a role in cell mechanics, inhibition of enlazin in a cortexillin-I background restores cytokinesis furrowing dynamics and suppresses the growth-in-suspension defect. However, as expected for a role in cell adhesion, inhibiting enlazin in a myosin-II background induces a synthetic cytokinesis phenotype, frequently arresting furrow ingression at the dumbbell shape and/or causing recession of the furrow. Thus, enlazin has roles in cell mechanics and adhesion, and these roles seem to be differentially significant for cytokinesis, depending on the genetic background.  相似文献   

11.
Equatorial organization of myosin II and actin has been recognized as a universal event in cytokinesis of animal cells. Current models for the formation of equatorial cortex favor either directional cortical transport toward the equator or localized de novo assembly. However, this process has never been analyzed directly in dividing mammalian cells at a high resolution. Here we applied total internal reflection fluorescence microscope (TIRF-M), coupled with spatial temporal image correlation spectroscopy (STICS) and a new analytical approach termed temporal differential microscopy (TDM), to image the dynamics of myosin II and actin during the assembly of equatorial cortex. Our results indicated distinct and at least partially independent mechanisms for the early equatorial recruitment of myosin and actin filaments. Cortical myosin showed no detectable directional flow during early cytokinesis. In addition to equatorial assembly, we showed that localized inhibition of disassembly contributed to the formation of the equatorial myosin band. In contrast to myosin, actin filaments underwent a striking flux toward the equator. Myosin motor activity was required for the actin flux, but not for actin concentration in the furrow, suggesting that there was a flux-independent, de novo mechanism for actin recruitment along the equator. Our results indicate that cytokinesis involves signals that regulate both assembly and disassembly activities and argue against mechanisms that are coupled to global cortical movements.  相似文献   

12.
Cell shape and membrane remodeling rely on regulated interactions between the lipid bilayer and cytoskeletal arrays at the cell cortex. During cytokinesis, animal cells build an actomyosin ring anchored to the plasma membrane at the equatorial cortex. Ring constriction coupled to plasma-membrane ingression separates the two daughter cells. Plasma-membrane lipids influence membrane biophysical properties such as membrane curvature and elasticity and play an active role in cell function, and specialized membrane domains are emerging as important factors in regulating assembly and rearrangement of the cytoskeleton. Here, we show that mutations in the gene bond, which encodes a Drosophila member of the family of Elovl proteins that mediate elongation of very-long-chain fatty acids, block or dramatically slow cleavage-furrow ingression during early telophase in dividing spermatocytes. In bond mutant cells at late stages of division, the contractile ring frequently detaches from the cortex and constricts or collapses to one side of the cell, and the cleavage furrow regresses. Our findings implicate very-long-chain fatty acids or their derivative complex lipids in allowing supple membrane deformation and the stable connection of cortical contractile components to the plasma membrane during cell division.  相似文献   

13.
Signaling by the centrosomal asters and spindle midzone coordinately directs formation of the cytokinetic furrow. Here, we explore the contribution of the asters by analyzing the consequences of altering interaster distance during the first cytokinesis of the Caenorhabditis elegans embryo. Delaying aster separation, by using TPXL-1 depletion to shorten the metaphase spindle, leads to a corresponding delay in furrow formation, but results in a single furrow that ingresses at a normal rate. Preventing aster separation, by simultaneously inhibiting TPXL-1 and Gα signaling-based cortical forces pulling on the asters, delays furrow formation and leads to the formation of multiple furrows that ingress toward the midzone. Disrupting midzone-based signaling, by depleting conserved midzone complexes, results in a converse phenotype: neither the timing nor the number of furrows is affected, but the rate of furrow ingression is decreased threefold. Simultaneously delaying aster separation and disrupting midzone-based signaling leads to complete failure of furrow formation. Based on these results, we propose that signaling by the separated asters executes two critical functions: 1) it couples furrow formation to anaphase onset by concentrating contractile ring proteins on the equatorial cortex in a midzone-independent manner and 2) it subsequently refines spindle midzone-based signaling to restrict furrowing to a single site.  相似文献   

14.
Much of our understanding of animal cell cytokinesis centers on the regulation of the equatorial acto-myosin contractile ring that drives the rapid ingression of a deep cleavage furrow. However, the central part of the mitotic spindle collapses to a dense structure that impedes the furrow and keeps the daughter cells connected via an intercellular bridge. Factors involved in the formation, maintenance, and resolution of this bridge are largely unknown. Using a library of 7,216 double-stranded RNAs (dsRNAs) representing the conserved genes of Drosophila, we performed an RNA interference (RNAi) screen for cytokinesis genes in Schneider's S2 cells. We identified both familiar and novel genes whose inactivation induced a multi-nucleate phenotype. Using live video microscopy, we show that three genes: anillin, citron-kinase (CG10522), and soluble N-ethylmaleimide sensitive factor (NSF) attachment protein (alpha-SNAP), are essential for the terminal (post-furrowing) events of cytokinesis. anillin RNAi caused gradual disruption of the intercellular bridge after furrowing; citron-kinase RNAi destabilized the bridge at a later stage; alpha-SNAP RNAi caused sister cells to fuse many hours later and by a different mechanism. We have shown that the stability of the intercellular bridge is essential for successful cytokinesis and have defined genes contributing to this stability.  相似文献   

15.
Cell division after mitosis is mediated by ingression of an actomyosin-based contractile ring. The active, GTP-bound form of the small GTPase RhoA is a key regulator of contractile-ring formation. RhoA concentrates at the equatorial cell cortex at the site of the nascent cleavage furrow. During cytokinesis, RhoA is activated by its RhoGEF, ECT2. Once activated, RhoA promotes nucleation, elongation, and sliding of actin filaments through the coordinated activation of both formin proteins and myosin II motors (reviewed in [1, 2]). Anillin is a 124 kDa protein that is highly concentrated in the cleavage furrow in numerous animal cells in a pattern that resembles that of RhoA [3-7]. Although anillin contains conserved N-terminal actin and myosin binding domains and a PH domain at the C terminus, its mechanism of action during cytokinesis remains unclear. Here, we show that human anillin contains a conserved C-terminal domain that is essential for its function and localization. This domain shares homology with the RhoA binding protein Rhotekin and directly interacts with RhoA. Further, anillin is required to maintain active myosin in the equatorial plane during cytokinesis, suggesting it functions as a scaffold protein to link RhoA with the ring components actin and myosin. Although furrows can form and initiate ingression in the absence of anillin, furrows cannot form in anillin-depleted cells in which the central spindle is also disrupted, revealing that anillin can also act at an early stage of cytokinesis.  相似文献   

16.
The role of membrane traffic during cell division has only recently begun to be investigated. A growing number of trafficking proteins seem to be involved in the successful completion of cytokinesis. Clathrin was the first trafficking protein to be shown to be essential for cytokinesis in Dictyostelium. Here we investigate the nature of the cytokinesis defect of Dictyostelium clathrin null cells. We found that adherent clathrin null cells do form cleavage furrows but cannot maintain a consistent rate of furrow ingression. Clathrin null cells are completely defective in cytokinesis when placed in suspension. In these conditions, the cells develop an abnormal division morphology that consists of two lateral "furrows" on either side of a bulging equatorial region. Cells expressing GFP-myosin II were examined at various stages of cytokinesis. Clathrin null cells show multiple defects in myosin organization and localization that parallel the striking failure in furrow morphology. We postulate that this morphology is the result of contraction at the rear of the presumptive daughter cells in concert with incomplete furrow ingression.  相似文献   

17.
The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis.  相似文献   

18.
Chlamydia trachomatis infection has been suggested to induce host genome duplication and is linked to increased risks of cervical cancer. We describe here the mechanism by which Chlamydia causes a cleavage furrow defect that consistently results in the formation of multinucleated host cells, a phenomenon linked to tumorigenesis. Host signaling proteins essential for cleavage furrow initiation, ingression, and stabilization are displaced from one of the prospective furrowing cortices after Chlamydia infection. This protein displacement leads to the formation of a unique asymmetrical, unilateral cleavage furrow in infected human cells. The asymmetrical distribution of signaling proteins is caused by the physical presence of the Chlamydia inclusion at the cell equator. By using ingested latex beads, we demonstrate that the presence of a large vacuole at the cell equator is sufficient to cause furrow ingression failure and can lead to multinucleation. Interestingly, internalized latex beads of similar size do not localize to the cell equator as efficiently as Chlamydia inclusions; moreover, inhibition of bacterial protein synthesis with antibiotic reduces the frequency at which Chlamydia localizes to the cell equator. Together, these results suggest that Chlamydia effectors are involved in strategic positioning of the inclusion during cell division.  相似文献   

19.
At the end of the cell cycle a cell physically divides into two daughter cells in a process called cytokinesis. Cytokinesis consists of at least four steps: 1. The position of the presumptive cytokinesis furrow is specified. 2. A contractile ring is formed. 3. The contractile ring contracts, resulting in furrow ingression. 4. Cytokinesis completes with sealing of the membranes. The mitotic spindle positions the cytokinesis furrow at the cell cortex midway along the longitudinal axis of the spindle, which is both the mid-point between the two asters and the location of the spindle midzone. The mitotic spindle emits two consecutive signals that position the furrow: Microtubule asters provide a first signal; the spindle midzone provides a second signal. Our results support the view that the spindle midzone is dispensable for completion of cytokinesis. However, the spindle midzone can negatively affect aster-positioned cytokinesis, possibly because the aster- and midzone-positioned furrows compete for contractile elements.  相似文献   

20.
Anillin, an actin-binding protein localized at the cleavage furrow, is required for cytokinesis. Through an in vitro expression screen, we identified anillin as a substrate of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that controls mitotic progression. We found that the levels of anillin fluctuate in the cell cycle, peaking in mitosis and dropping drastically during mitotic exit. Ubiquitination of anillin required a destruction-box and was mediated by Cdh1, an activator of APC/C. Overexpression of Cdh1 reduced the levels of anillin, whereas inactivation of APC/C(Cdh1) increased the half-life of anillin. Functionally, anillin was required for the completion of cytokinesis. In anillin knockdown cells, the cleavage furrow ingressed but failed to complete the ingression. At late cytokinesis, the cytosol and DNA in knockdown cells underwent rapid myosin-based oscillatory movement across the furrow. During this movement, RhoA and active myosin were absent from the cleavage furrow, and myosin was redistributed to cortical patches, which powers the random oscillatory movement. We concluded that anillin functions to maintain the localization of active myosin, thereby ensuring the spatial control of concerted contraction during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号