首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-glycosylation is a post-translational modification performed by members of all three domains of life. Studies on the halophile Haloferax volcanii have offered insight into the archaeal version of this universal protein-processing event. In the present study, AglQ was identified as a novel component of the pathway responsible for the assembly and addition of a pentasaccharide to select Asn residues of Hfx. volcanii glycoproteins, such as the S-layer glycoprotein. In cells deleted of aglQ, both dolichol phosphate, the lipid carrier used in Hfx. volcanii N-glycosylation, and modified S-layer glycoprotein Asn residues only presented the first three pentasaccharide subunits, pointing to a role for AglQ in either preparing the third sugar for attachment of the fourth pentasaccharide subunit or processing the fourth sugar prior to its addition to the lipid-linked trisaccharide. To better define the precise role of AglQ, shown to be a soluble protein, bioinformatics tools were recruited to identify sequence or structural homologs of known function. Site-directed mutagenesis experiments guided by these predictions identified residues important for AglQ function. The results obtained point to AglQ acting as an isomerase in Hfx. volcanii N-glycosylation.  相似文献   

2.
In Archaea, dolichol phosphates have been implicated as glycan carriers in the N-glycosylation pathway, much like their eukaryal counterparts. To clarify this relation, highly sensitive liquid chromatography/mass spectrometry was employed to detect and characterize glycan-charged phosphodolichols in the haloarchaeon Haloferax volcanii. It is reported that Hfx. volcanii contains a series of C(55) and C(60) dolichol phosphates presenting saturated isoprene subunits at the α and ω positions and sequentially modified with the first, second, third and methylated fourth sugar subunits comprising the first four subunits of the pentasaccharide N-linked to the S-layer glycoprotein, a reporter of N-glycosylation. Moreover, when this glycan-charged phosphodolichol pool was examined in cells deleted of agl genes encoding glycosyltransferases participating in N-glycosylation and previously assigned roles in adding pentasaccharide residues one to four, the composition of the lipid-linked glycans was perturbed in the identical manner as was S-layer glycoprotein N-glycosylation in these mutants. In contrast, the fifth sugar of the pentasaccharide, identified as mannose in this study, is added to a distinct dolichol phosphate carrier. This represents the first evidence that in Archaea, as in Eukarya, the oligosaccharides N-linked to glycoproteins are sequentially assembled from glycans originating from distinct phosphodolichol carriers.  相似文献   

3.
In Haloferax volcanii, a series of Agl proteins mediates protein N-glycosylation. The genes encoding all but one of the Agl proteins are sequestered into a single gene island. The same region of the genome includes sequences also suspected but not yet verified as serving N-glycosylation roles, such as HVO_1526. In the following, HVO_1526, renamed AglS, is shown to be necessary for the addition of the final mannose subunit of the pentasaccharide N-linked to the surface (S)-layer glycoprotein, a convenient reporter of N-glycosylation in Hfx. volcanii. Relying on bioinformatics, topological analysis, gene deletion, mass spectrometry, and biochemical assays, AglS was shown to act as a dolichol phosphate-mannose mannosyltransferase, mediating the transfer of mannose from dolichol phosphate to the tetrasaccharide corresponding to the first four subunits of the pentasaccharide N-linked to the S-layer glycoprotein.  相似文献   

4.
5.
N‐linked protein glycosylation occurs in all three branches of life, eukaryotes, bacteria and archaea. The simplest system is that of the bacterium, Campylobacter jejuni, in which a heptasaccharide glycan is added to multiple proteins from a single lipid carrier molecule. In the eukaryotic system a conserved tetradecasaccharide modification is first added to target proteins, but is then modified by trimming and addition of other glycans from additional carrier molecules resulting in a diverse array of glycans of distinct functionality. In the halophilic Archaea from the Dead Sea, Haloferax volcanii, the surface array or S‐layer protein is glycosylated with a pentasaccharide. This glycan is synthesized from two separate carrier molecules, one that carries a tetrasaccharide and another that carries the terminal mannose, in a process that is analogous to that of eukaryotes. In this issue of Molecular Microbiology the glycosylation of the S‐layer of another halophilic Archaea from the Dead Sea, Haloarcula marismortui is characterized ( Calo et al., 2011 ). This S‐layer is glycosylated with the same pentasaccharide as that of Hfx. volcanii, but the intact pentasaccharide is synthesized on a single carrier molecule in Har. marismortui in a process that more closely resembles that of the bacterial N‐linked system.  相似文献   

6.
Recent insight into the N-glycosylation pathway of the haloarchaeon, Haloferax volcanii, is helping to bridge the gap between our limited understanding of the archaeal version of this universal post-translational modification and the better-described eukaryal and bacterial processes. To delineate as yet undefined steps of the Hfx. volcanii N-glycosylation pathway, a comparative approach was taken with the initial characterization of N-glycosylation in Haloarcula marismortui, a second haloarchaeon also originating from the Dead Sea. While both species decorate the reporter glycoprotein, the S-layer glycoprotein, with the same N-linked pentasaccharide and employ dolichol phosphate as lipid glycan carrier, species-specific differences in the two N-glycosylation pathways exist. Specifically, Har. marismortui first assembles the complete pentasaccharide on dolichol phosphate and only then transfers the glycan to the target protein, as in the bacterial N-glycosylation pathway. In contrast, Hfx. volcanii initially transfers the first four pentasaccharide subunits from a common dolichol phosphate carrier to the target protein and only then delivers the final pentasaccharide subunit from a distinct dolichol phosphate to the N-linked tetrasaccharide, reminiscent of what occurs in eukaryal N-glycosylation. This study further indicates the extraordinary diversity of N-glycosylation pathways in Archaea, as compared with the relatively conserved parallel processes in Eukarya and Bacteria.  相似文献   

7.
8.
Both the lipid and the protein components of biological membranes can be modified by the covalent addition of polysaccharides. Whereas eukaryal and bacterial pathways of lipid and protein glycosylation are relatively well defined, considerably less is known of the parallel processes in Archaea. Recent efforts have identified glycosyltransferases involved in N-glycosylation of the surface-layer glycoprotein of the halophilic archaeon Haloferax volcanii. In the present study, the involvement of these same glycosyltransferases in the biosynthesis of Hfx. volcanii glycolipids was considered by performing nuclear magnetic resonance analysis of the glycolipid fraction of Hfx. volcanii cells deleted of genes encoding those glycosyltransferases, as well as the oligosaccharyltransferase, AglB. The results reveal that different glycosyltransferases are involved in the biosynthesis of N-linked glycoproteins and glycolipids in Archaea.  相似文献   

9.
In this study, the effects of deleting two genes previously implicated in Haloferax volcanii N-glycosylation on the assembly and attachment of a novel Asn-linked pentasaccharide decorating the H. volcanii S-layer glycoprotein were considered. Mass spectrometry revealed the pentasaccharide to comprise two hexoses, two hexuronic acids and an additional 190 Da saccharide. The absence of AglD prevented addition of the final hexose to the pentasaccharide, while cells lacking AglB were unable to N-glycosylate the S-layer glycoprotein. In AglD-lacking cells, the S-layer glycoprotein-based surface layer presented both an architecture and protease susceptibility different from the background strain. By contrast, the absence of AglB resulted in enhanced release of the S-layer glycoprotein. H. volcanii cells lacking these N-glycosylation genes, moreover, grew significantly less well at elevated salt levels than did cells of the background strain. Thus, these results offer experimental evidence showing that N-glycosylation endows H. volcanii with an ability to maintain an intact and stable cell envelope in hypersaline surroundings, ensuring survival in this extreme environment.  相似文献   

10.
In Eukarya, N glycosylation involves the actions of enzymes working on both faces of the endoplasmic reticulum membrane. The steps of bacterial N glycosylation, in contrast, transpire essentially on the cytoplasmic side of the plasma membrane, with only transfer of the assembled glycan to the target protein occurring on the external surface of the cell. For Archaea, virtually nothing is known about the topology of enzymes involved in assembling those glycans that are subsequently N linked to target proteins on the external surface of the cell. To remedy this situation, subcellular localization and topology predictive algorithms, protease accessibility, and immunoblotting, together with cysteine modification following site-directed mutagenesis, were enlisted to define the topology of Haloferax volcanii proteins experimentally proven to participate in the N-glycosylation process. AglJ and AglD, involved in the earliest and latest stages, respectively, of assembly of the pentasaccharide decorating the H. volcanii S-layer glycoprotein, were shown to present their soluble N-terminal domain, likely containing the putative catalytic site of each enzyme, to the cytosol. The same holds true for Alg5-B, Dpm1-A, and Mpg1-D, proteins putatively involved in this posttranslational event. The results thus point to the assembly of the pentasaccharide linked to certain Asn residues of the H. volcanii S-layer glycoprotein as occurring within the cell.  相似文献   

11.
In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.  相似文献   

12.

Background

Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general.

Methodology/Principal Findings

We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively) and the pHV2 plasmid (6.4 kb).

Conclusions/Significance

The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.  相似文献   

13.
N-linked protein glycosylation was originally thought to be specific to eukaryotes, but evidence of this post-translational modification has now been discovered across all domains of life: Eucarya, Bacteria, and Archaea. In all cases, the glycans are first assembled in a step-wise manner on a polyisoprenoid carrier lipid. At some stage of lipid-linked oligosaccharide synthesis, the glycan is flipped across a membrane. Subsequently, the completed glycan is transferred to specific asparagine residues on the protein of interest. Interestingly, though the N-glycosylation pathway seems to be conserved, the biosynthetic pathways of the polyisoprenoid carriers, the specific structures of the carriers, and the glycan residues added to the carriers vary widely. In this review we will elucidate how organisms in each basic domain of life synthesize the polyisoprenoids that they utilize for N-linked glycosylation and briefly discuss the subsequent modifications of the lipid to generate a lipid-linked oligosaccharide.  相似文献   

14.
In N-glycosylation in both Eukarya and Archaea, N-linked oligosaccharides are assembled on dolichol phosphate prior to transfer of the glycan to the protein target. However, whereas only the α-position isoprene subunit is saturated in eukaryal dolichol phosphate, both the α- and ω-position isoprene subunits are reduced in the archaeal lipid. The agents responsible for dolichol phosphate saturation remain largely unknown. The present study sought to identify dolichol phosphate reductases in the halophilic archaeon, Haloferax volcanii. Homology-based searches recognize HVO_1799 as a geranylgeranyl reductase. Mass spectrometry revealed that cells deleted of HVO_1799 fail to fully reduce the isoprene chains of H. volcanii membrane phospholipids and glycolipids. Likewise, the absence of HVO_1799 led to a loss of saturation of the ω-position isoprene subunit of C55 and C60 dolichol phosphate, with the effect of HVO_1799 deletion being more pronounced with C60 dolichol phosphate than with C55 dolichol phosphate. Glycosylation of dolichol phosphate in the deletion strain occurred preferentially on that version of the lipid saturated at both the α- and ω-position isoprene subunits.  相似文献   

15.

Background  

DNA ligases are required for DNA strand joining in all forms of cellular life. NAD+-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD+-dependent DNA ligases is the LigN enzyme of the halophilic euryarchaeon Haloferax volcanii, the gene for which was apparently acquired by Hfx.volcanii through lateral gene transfer (LGT) from a halophilic eubacterium. Genetic studies show that the LGT-acquired LigN enzyme shares an essential function with the native Hfx.volcanii ATP-dependent DNA ligase protein LigA.  相似文献   

16.
To cope with life in hypersaline environments, halophilic archaeal proteins are enriched in acidic amino acids. This strategy does not, however, offer a response to transient changes in salinity, as would post-translational modifications. To test this hypothesis, N-glycosylation of the Haloferax volcanii S-layer glycoprotein was compared in cells grown in high (3.4 M NaCl) and low (1.75 M NaCl) salt, as was the glycan bound to dolichol phosphate, the lipid upon which the N-linked glycan is assembled. In high salt, S-layer glycoprotein Asn-13 and Asn-83 are modified by a pentasaccharide, while dolichol phosphate is modified by a tetrasaccharide comprising the first four pentasaccharide residues. When the same targets were considered from cells grown in low salt, substantially less pentasaccharide was detected. At the same time, cells grown at low salinity contain dolichol phosphate modified by a distinct tetrasaccharide absent in cells grown at high salinity. The same tetrasaccharide modified S-layer glycoprotein Asn-498 in cells grown in low salt, whereas no glycan decorated this residue in cells grown in the high-salt medium. Thus, in response to changes in environmental salinity, Hfx. volcanii not only modulates the N-linked glycans decorating the S-layer glycoprotein but also the sites of such post-translational modification.  相似文献   

17.
N-glycosylation, a posttranslational modification required for the accurate folding and stability of many proteins, has been observed in organisms of all domains of life. Although the haloarchaeal S-layer glycoprotein was the first prokaryotic glycoprotein identified, little is known about the glycosylation of other haloarchaeal proteins. We demonstrate here that the glycosylation of Haloferax volcanii flagellins requires archaeal glycosylation (Agl) components involved in S-layer glycosylation and that the deletion of any Hfx. volcanii agl gene impairs its swimming motility to various extents. A comparison of proteins in CsCl density gradient centrifugation fractions from supernatants of wild-type Hfx. volcanii and deletion mutants lacking the oligosaccharyltransferase AglB suggests that when the Agl glycosylation pathway is disrupted, cells lack stable flagella, which purification studies indicate consist of a major flagellin, FlgA1, and a minor flagellin, FlgA2. Mass spectrometric analyses of FlgA1 confirm that its three predicted N-glycosylation sites are modified with covalently linked pentasaccharides having the same mass as that modifying its S-layer glycoprotein. Finally, the replacement of any of three predicted N-glycosylated asparagines of FlgA1 renders cells nonmotile, providing direct evidence for the first time that the N-glycosylation of archaeal flagellins is critical for motility. These results provide insight into the role that glycosylation plays in the assembly and function of Hfx. volcanii flagella and demonstrate that Hfx. volcanii flagellins are excellent reporter proteins for the study of haloarchaeal glycosylation processes.  相似文献   

18.
Oligosaccharyltransferase (OST) catalyzes the transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. In the bacterium Campylobacter jejuni, a single-subunit membrane protein, PglB, catalyzes N-glycosylation. We report the 2.8 Å resolution crystal structure of the C-terminal globular domain of PglB and its comparison with the previously determined structure from the archaeon Pyrococcus AglB. The two distantly related oligosaccharyltransferases share unexpected structural similarity beyond that expected from the sequence comparison. The common architecture of the putative catalytic sites revealed a new catalytic motif in PglB. Site-directed mutagenesis analyses confirmed the contribution of this motif to the catalytic function. Bacterial PglB and archaeal AglB constitute a protein family of the catalytic subunit of OST along with STT3 from eukaryotes. A structure-aided multiple sequence alignment of the STT3/PglB/AglB protein family revealed three types of OST catalytic centers. This novel classification will provide a useful framework for understanding the enzymatic properties of the OST enzymes from Eukarya, Archaea, and Bacteria.  相似文献   

19.

SUMMARY

N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.  相似文献   

20.
Haloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx. volcanii is polyploid, it was investigated whether DNA might be used as storage polymer, in addition to its role as genetic material. It could be verified that during phosphate starvation cells multiply by distributing as well as by degrading their chromosomes. In contrast, the number of ribosomes stayed constant, revealing that ribosomes are distributed to descendant cells, but not degraded. These results suggest that the phosphate of phosphate-containing biomolecules (other than DNA and RNA) originates from that stored in DNA, not in rRNA. Adding phosphate to chromosome depleted cells rapidly restores polyploidy. Quantification of desiccation survival of cells with different ploidy levels showed that under phosphate starvation Hfx. volcanii diminishes genetic advantages of polyploidy in favor of cell multiplication. The consequences of the usage of genomic DNA as phosphate storage polymer are discussed as well as the hypothesis that DNA might have initially evolved in evolution as a storage polymer, and the various genetic benefits evolved later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号