首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomes are essential organelles for intracellular degradation and are generally sequestered near the cell center to receive vesicles with contents targeted for destruction. During ascorbic acid (AA)-induced differentiation of osteogenic cells ( Beck, G. R., Jr., Zerler, B., and Moran, E. (2001) Cell Growth Differ. 12, 61-83 ), we saw a marked increase in total lysosome organelles in osteoblastic cells, in addition to an enhanced endocytic rate. Interestingly, lysosomes were dispersed toward the cell periphery in differentiating osteoblasts. We determined that lysosome dispersion in differentiated osteoblasts required intact microtubules for long range transport and was dependent on kinesin motors but did not involve cytosolic acidification. Impairment of lysosome dispersion markedly reduced AA-induced osteoblast differentiation. Lysosomes were not secreted in differentiated osteoblasts, implicating them instead in intracellular degradation. We assayed the degradative capacity and saw a significant increase in DQ-ovalbumin fluorescence in differentiated osteogenic cells compared with undifferentiated control cells. Osteogenic cells are specialized for type I collagen production, and we noted enhanced secreted and intracellular collagen in AA-differentiated osteoblasts versus control cells. Importantly, osteoblasts displayed procollagen-containing vesicles that were distributed throughout the cytoplasm, a portion of which colocalized with lysosomes. Treatment of cells with 2,2'-dipyridyl to inhibit procollagen trimerization enhanced colocalization of lysosomes with procollagen-containing organelles, implicating dispersed lysosomes in collagen processing in osteogenic cells.  相似文献   

2.
Mutations in the large BEACH domain‐containing protein LYST causes Chediak–Higashi syndrome. The diagnostic hallmark is enlarged lysosomes and lysosome‐related organelles in various cell types. Dysfunctional secretion of enlarged lysosome‐related organelles has been observed in cells with mutations in LYST, but the capacity of the enlarged lysosomes to degrade endogenous proteins has not been studied. Here, we show for the first time that small interfering RNA‐depletion of LYST in human cell lines recapitulates the LYST mutant phenotype of enlarged lysosomes. We found no evidence for an effect of LYST depletion on autophagy or endocytic degradation. Autophagosomes are formed in normal size and quantities and are able to fuse to the enlarged lysosomes, leading to normal rates of degradation. Degradation of the epidermal growth factor receptor (EGFR) was similarly not affected, indicating that the enlarged lysosomes are fully functional in degrading endogenous proteins. Retrograde trafficking of toxins as well as the localization of transporters of lysosomal proteins, adaptor protein‐3 (AP‐3) and cation‐independent mannose‐6‐phosphate receptor (CI‐MPR), were all found to be unaffected by LYST. Quantitative analysis of the enlarged lysosomes shows that LYST depletion causes a reduction in vesicle quantity per cell, while the total enzymatic content and vesicular pH are unaffected, supporting a role for LYST in lysosomal fission and/or fusion events.   相似文献   

3.
《Biophysical journal》2022,121(7):1205-1218
Lysosomes are membrane-bound organelles that serve as the endpoint for endocytosis, phagocytosis, and autophagy, degrading the molecules, pathogens, and organelles localized within them. These cellular functions require intracellular transport. We use fluorescence microscopy to characterize the motion of lysosomes as a function of intracellular region, perinuclear or periphery, and lysosome diameter. Single-particle tracking data are complemented by changepoint identification and analysis of a mathematical model for state switching. We first classify lysosomal motion as motile or stationary. We then study how lysosome location and diameter affects the proportion of time spent in each state and quantify the speed during motile periods. We find that the proportion of time spent stationary is strongly region dependent, with significantly decreased motility in the perinuclear region. Increased lysosome diameter only slightly decreases speed. Overall, these results demonstrate the importance of decomposing particle trajectories into qualitatively different behaviors before conducting population-wide statistical analysis. Our results suggest that intracellular region is an important factor to consider in studies of intracellular transport.  相似文献   

4.
5.
Lysosomes are dynamic structures capable of fusing with endosomes as well as other lysosomes. We examined the biochemical requirements for homotypic lysosome fusion in vitro using lysosomes obtained from rabbit alveolar macrophages or the cultured macrophage-like cell line, J774E. The in vitro assay measures the formation of a biotinylated HRP–avidin conjugate, in which biotinylated HRP and avidin were accumulated in lysosomes by receptor-mediated endocytosis. We determined that lysosome fusion in vitro was time- and temperature-dependent and required ATP and an N-ethylmaleimide (NEM)-sensitive factor from cytosol. The NEM-sensitive factor was NSF as purified recombinant NSF could completely replace cytosol in the fusion assay whereas a dominant-negative mutant NSF inhibited fusion. Fusion in vitro was extensive; up to 30% of purified macrophage lysosomes were capable of self-fusion. Addition of GTPγs to the in vitro assay inhibited fusion in a concentration-dependent manner. Purified GDP-dissociation inhibitor inhibited homotypic lysosome fusion suggesting the involvement of rabs. Fusion was also inhibited by the heterotrimeric G protein activator mastoparan, but not by its inactive analogue Mas-17. Pertussis toxin, a Gαi activator, inhibited in vitro lysosome fusion whereas cholera toxin, a Gαs activator did not inhibit the fusion reaction. Addition of agents that either promoted or disrupted microtubule function had little effect on either the extent or rate of lysosome fusion. The high value of homotypic fusion was supported by in vivo experiments examining lysosome fusion in heterokaryons formed between cells containing fluorescently labeled lysosomes. In both macrophages and J774E cells, almost complete mixing of the lysosome labels was observed within 1–3 h of UV sendai-mediated cell fusion. These studies provide a model system for identifying the components required for lysosome fusion.  相似文献   

6.
Lysosomes are dynamic organelles, which can fuse with a variety of targets and undergo constant regeneration. They can move along microtubules in a retrograde and anterograde fashion by using motor proteins, kinesin and dynein, being main players in extracellular secretion, intracellular components degradation and recycling. Moreover, lysosomes interact with other intracellular organelles to regulate their turnover, such as ER, mitochondria and peroxisomes.The correct localization of lysosomes is relevant in several physiological processes, including appropriate antigen presentation, neurotransmission and receptors modulation in neuronal synapsis, whereas hepatic lysosomes and autophagy are master regulators of nutrient homeostasis.Alterations in lysosome function due to mutation of genes encoding lysosomal proteins, soluble hydrolases as well as membrane proteins, lead to lysosomal storage diseases (LSDs). Lysosomes containing undegraded substrates are finally stacked and therefore miss positioned inside the cell, leading to lysosomal dysfunction, which impacts a wide range of cellular functions.  相似文献   

7.
Lysosomal Ca2+ release channel TRPML1 has been suggested to regulate lysosome size by activating calmodulin (CaM). To further understand how TRPML1 and CaM regulate lysosome size, in this study, we report that inhibiting mTORC1 causes enlarged lysosomes, and the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. We also show that lysosome vacuolation induced by inhibiting TRPML1 is corrected by mTORC1 upregulation, and the facilitating effect of TRPML1 on the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. In the meantime, lysosome vacuolation induced by inhibiting CaM is corrected by mTORC1 upregulation, and mTORC1 overexpression corrects the inhibitory effect of CaM antagonist on the recovery of enlarged lysosomes. Conversely, the vacuolation induced by suppressing mTORC1 is not corrected by upregulating CaM. These data suggest that mTORC1 functions downstream of TRPML1 and CaM to regulate lysosome size. Together with our recent finding showing that TRPML1, CaM and mTORC1 form a macromolecular complex to control mTORC1 activity, we suggest that TRPML1 and CaM control lysosome fission through regulating mTORC1, identifying an mTORC1-dependent molecular mechanism for lysosomal membrane fission.  相似文献   

8.
9.
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase–based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein–dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.  相似文献   

10.
Cancer cells invade by secreting enzymes that degrade the extracellular matrix and these are sequestered in lysosomal vesicles. In this study, the effects of the selective lysosome lysing drug GPN and the lysosome exocytosis inhibitor vacuolin-1 on lysosome exocytosis were studied to determine their effect on glioma cell migration and invasion. Both GPN and vacuolin-1 evidently inhibited migration and invasion in transwell experiments and scratch experiments. There are more lysosomes located on the cell membrane of glioma cells than of astrocytes. GPN decreased the lysosome number on the cell membrane. We found that rab27A was expressed in glioma cells, and colocalized with cathepsin D in lysosome. RNAi-Rab27A inhibited lysosome cathepsin D exocytosis and glioma cell invasion in an in vitro assay. Inhibition of cathepsin D inhibited glioma cell migration. The data suggest that the inhibition of lysosome exocytosis from glioma cells plays an important modulatory role in their migration and invasion.  相似文献   

11.
Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome‐related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7‐interacting lysosomal protein) and FYCO1 (coiled‐coil domain‐containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS‐treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population.  相似文献   

12.
Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.  相似文献   

13.
A series of pyrene-benzothiazolium dyes (1a1d) were experimentally investigated to study their internalization mechanism into cellular lysosomes as well as their potential imaging applications for live cell imaging. The lysosome selectivity of the probes was further compared by using fluorescently tagged lysosome associated membrane protein-1 (LAMP-1) expression-dependent visualization in both normal (COS-7, HEK293) and cancer (A549, Huh 7.5) cell lines. These probes were successfully employed as reliable lysosome markers in tumor cell models, thus providing an attractive alternative to LAMP-1 expression-dependent visualization methods. One advantage of these probes is the elimination of significant background fluorescence arising from fluorescently tagged protein expression on the cell surface when cells were transfected with LAMP-1 expression plasmids. Probes exhibited remarkable ability to stain cellular lysosomes for long-term experiments (up to 24 h) and the highly lipophilic nature of the probe design allowed their accumulation in hydrophobic regions of the cellular lysosomes. Experimental evidences indicated that the probes are likely to be internalized into lysosomes via endocytosis and accumulated in the hydrophobic regions of the lysosomes rather than in the acidic lysosomal lumen. These probes also demonstrated significant stability and lysosome staining for fixed cell imaging applications as well. Lastly, the benzothiazolium moiety of the probes was identified as the key component for lysosome selectivity.  相似文献   

14.
Chediak–Higashi syndrome (CHS) is caused by mutations in the gene encoding LYST protein, the function of which remains poorly understood. Prominent features of CHS include defective secretory lysosome exocytosis and the presence of enlarged, lysosome‐like organelles in several cell types. In order to get further insight into the role of LYST in the biogenesis and exocytosis of cytotoxic granules, we analyzed cytotoxic T lymphocytes (CTLs) from patients with CHS. Using confocal microscopy and correlative light electron microscopy, we showed that the enlarged organelle in CTLs is a hybrid compartment that contains proteins components from recycling‐late endosomes and lysosomes. Enlargement of cytotoxic granules results from the progressive clustering and then fusion of normal‐sized endolysosomal organelles. At the immunological synapse (IS) in CHS CTLs, cytotoxic granules have limited motility and appear docked while nevertheless unable to degranulate. By increasing the expression of effectors of lytic granule exocytosis, such as Munc13‐4, Rab27a and Slp3, in CHS CTLs, we were able to restore the dynamics and the secretory ability of cytotoxic granules at the IS. Our results indicate that LYST is involved in the trafficking of the effectors involved in exocytosis required for the terminal maturation of perforin‐containing vesicles into secretory cytotoxic granules.   相似文献   

15.
Acidic extracellular pH (pHe) is a common feature of the tumor microenvironment and has been implicated in tumor invasion through the induction of protease secretion. Since lysosomes constitute the major storehouse of cellular proteases, the trafficking of lysosomes to the cell periphery may be required in order to secrete proteases. We demonstrate that a pHe of 6.4-6.8 induced the trafficking of lysosomes to membrane protrusions in the cell periphery. This trafficking event depended upon the PI3K pathway, the GTPase RhoA and sodium-proton exchange activity, resulting in lysosomal exocytosis. Acidic pHe induced a cytoplasmic acidification (although cytoplasmic acidification was not sufficient for acidic pHe-induced lysosome trafficking and exocytosis) and inhibition of NHE activity with the amiloride derivative, EIPA or the anti-diabetic agent troglitazone prevented lysosome trafficking to the cell periphery. Interestingly, using the more specific NHE1 and NHE3 inhibitors, cariporide and s3226 respectively, we show that multiple NHE isoforms are involved in acidic pHe-induced lysosome trafficking and exocytosis. Moreover, in cells expressing NHE1 shRNA, although basal NHE activity was decreased, lysosomes still underwent acidic pHe-induced trafficking, suggesting compensation by other NHE family members. Together these data implicate proton exchangers, especially NHE1 and NHE3, in acidic pHe-induced lysosome trafficking and exocytosis.  相似文献   

16.
The lytic proteins mediating target cell killing are stored in the lysosomes of activated cytotoxic T lymphocytes (CTL) and are secreted upon recognition of a target cell. These secretory lysosomes cannot be detected in resting T lymphocytes. Interaction of a resting cell with a target cell activates de novo formation of secretory lysosomes. CTL clones in culture mimic this behaviour, and so provide an ideal system for studying secretory lysosome biogenesis and maturation. In the genetic disease, Chediak Higashi syndrome (CHS), all lysosomes in the cells are enlarged and reduced in number compared with wild-type (WT) cells. We have used CTL from this disease to study secretory lysosome biogenesis and maturation. We show that at early stages after activation the secretory lysosomes are identical in WT and mutant cells, and that delivery of proteins to the secretory lysosome along the biosynthetic and endocytic pathways is normal in the mutant cells. With time, the lysosomes in the mutant cells aggregate, become larger and fewer in number and eventually form giant structures. Our results show that the initial steps of secretory lysosome formation are normal in CHS, but that the organelles subsequently fuse together during cell maturation to form the giant secretory lysosomes.  相似文献   

17.
18.
Stress conditions lead to a variety of physiological responses at the cellular level. Autophagy is an essential process used by animal, plant, and fungal cells that allows for both recycling of macromolecular constituents under conditions of nutrient limitation and remodeling the intracellular structure for cell differentiation. To elucidate the molecular basis of autophagic protein transport to the vacuole/lysosome, we have undertaken a morphological and biochemical analysis of this pathway in yeast.  相似文献   

19.
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild‐type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.   相似文献   

20.
The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号