首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously discovered N-substituted formamide deformylase (NfdA) in Arthrobacter pascens F164, which degrades N-substituted formamide (Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H., and Kobayashi, M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13726–13731). In this study, we found an enzyme involved in the first step of isonitrile metabolism, isonitrile hydratase, that hydrates isonitrile to the corresponding N-substituted formamide. First, we investigated the optimum culture conditions for the production of isonitrile hydratase. The highest enzyme activity was obtained when A. pascens F164 was cultured in a nutrient medium containing N-benzylformamide. This Arthrobacter isonitrile hydratase was purified, characterized, and compared with Pseudomonas putida N19-2 isonitrile hydratase (InhA), which is the sole one reported at present. Arthrobacter isonitrile hydratase was found to have a molecular mass of about 530 kDa and to consist of 12 identical subunits. The apparent Km value for cyclohexyl isocyanide was 0.95 ± 0.05 mm. A. pascens F164 grew and exhibited the isonitrile hydratase and N-substituted formamide deformylase activities when cultured in a medium containing an isonitrile as the sole carbon and nitrogen sources. However, both enzyme activities were not observed on culture in a medium containing glycerol and (NH4)2SO4 as the sole carbon and nitrogen sources, respectively. These findings suggested that the Arthrobacter enzyme is an inducible enzyme, possibly involved in assimilation and/or detoxification of isonitrile. Moreover, gene cloning of the Arthrobacter enzyme revealed no sequence similarity between this enzyme and InhA. Comparison of their properties and features demonstrated that the two enzymes are biochemically, immunologically, and structurally different from each other. Thus, we discovered a new isonitrile hydratase named InhB.  相似文献   

2.
We investigated the optimum culture conditions for the production of a novel enzyme, N-substituted formamide deformylase, which acts mainly on N-benzylformamide, in Arthrobacter pascens F164. The highest enzyme activity was obtained when this strain F164 was cultivated in a synthetic medium with N-benzylformamide as sole nitrogen source. This deformylase was found to be an inducible enzyme depending on N-benzylformamide.  相似文献   

3.
Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833–13838, 2013, http://dx.doi.org/10.1073/pnas.1305560110). The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ΔroxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack.  相似文献   

4.
Human females stop reproducing long before they die. Among other mammals, only pilot and killer whales exhibit a comparable period of post-reproductive life. The grandmother hypothesis suggests that kin selection can favour post-reproductive survival when older females help their relatives to reproduce. But although there is an evidence that grandmothers can provide such assistance, it is puzzling why menopause should have evolved only among the great apes and toothed whales. We have previously suggested (Cant & Johnstone 2008 Proc. Natl Acad. Sci. USA 105, 5332–5336 (doi:10.1073/pnas.0711911105)) that relatedness asymmetries owing to female-biased dispersal in ancestral humans would have favoured younger females in reproductive competition with older females, predisposing our species to the evolution of menopause. But this argument appears inapplicable to menopausal cetaceans, which exhibit philopatry of both sexes combined with extra-group mating. Here, we derive general formulae for ‘kinship dynamics’, the age-related changes in local relatedness that occur in long-lived social organisms as a consequence of dispersal and mortality. We show that the very different social structures of great apes and menopausal whales both give rise to an increase in local relatedness with female age, favouring late-life helping. Our analysis can therefore help to explain why, of all long-lived, social mammals, it is specifically among the great apes and toothed whales that menopause and post-reproductive helping have evolved.  相似文献   

5.
Formyltetrahydrofolate synthetase (E. C. 6. 3. 4. 3) was found in fresh spinach leaves and purified about 60-fold by treatments of ammonium sulfate, protamine sulfate, dialysis, and DEAE-cellulose column chromatography. Some properties of the enzyme were investigated. Optimum pH was found to be 7.5, and optimum temperature was observed to be at 37°C. In the enzyme reaction, FAH4 and formate were required specifically as the substrates, and Mg++ and ATP were essential components. The Michaelis constants for dl-FAH4, formate, ATP and magnesium chloride were 1.7×10?3 m, 1.7×10?2 m, 4.1×10?4 m and 3.3×10?3 m, respectively. The primary product formed in the reaction catalyzed by the enzyme was suggested as N10-formyl-FAH4 spectrophotometrically. It was observed that the enzyme also catalyzed the reverse reaction. The possible role of the enzyme in plants was discussed.  相似文献   

6.
Rhizobium leguminosarum bv. trifolii is a soil-inhabiting bacterium that has the capacity to be an effective N2-fixing microsymbiont of Trifolium (clover) species. R. leguminosarum bv. trifolii strain WSM1689 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium uniflorum collected on the edge of a valley 6 km from Eggares on the Greek Island of Naxos. Although WSM1689 is capable of highly effective N2-fixation with T. uniflorum, it is either unable to nodulate or unable to fix N2 with a wide range of both perennial and annual clovers originating from Europe, North America and Africa. WSM1689 therefore possesses a very narrow host range for effective N2 fixation and can thus play a valuable role in determining the geographic and phenological barriers to symbiotic performance in the genus Trifolium. Here we describe the features of R. leguminosarum bv. trifolii strain WSM1689, together with the complete genome sequence and its annotation. The 6,903,379 bp genome contains 6,709 protein-coding genes and 89 RNA-only encoding genes. This multipartite genome contains six distinct replicons; a chromosome of size 4,854,518 bp and five plasmids of size 667,306, 518,052, 341,391, 262,704 and 259,408 bp. This rhizobial genome is one of 20 sequenced as part of a DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

7.
Bradyrhizobium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule of Lupinus sp. collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N2 fixer with the legume host Lupinus angustifolius L.; a lupin species of considerable economic importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhizobium sp. strain WSM471. Therefore, WSM1417 is an important candidate strain with which to investigate the genetics of effective N2 fixation in the lupin-bradyrhizobia symbioses. Here we describe the features of Bradyrhizobium sp. strain WSM1417, together with genome sequence information and annotation. The 8,048,963 bp high-quality-draft genome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

8.
1. The yeast Candida boidinii was grown on glucose as carbon source with a range of amines and amino acids as nitrogen sources. Cells grown on amines contained elevated activities of catalase. If the amines contained N-methyl groups, formaldehyde dehydrogenase, formate dehydrogenase and S-formylglutathione hydrolase were also elevated in activity compared with cells grown on (NH4)2SO4. 2. Cells grown on all the amines tested, but not those grown on urea or amino acids, contained an oxidase attacking primary amines, which is referred to as methylamine oxidase. In addition, cells grown on some amines contained a second amine oxidase, which is referred to as benzylamine oxidase. 3. Both amine oxidases were purified to near homogeneity. 4. Benzylamine oxidase was considerably more stable at 45 and 50°C than was methylamine oxidase. 5. Both enzymes had a pH optimum in the region of 7.0, and had a considerable number of substrates in common. There were, however, significant differences in the substrate specificity of the two enzymes. The ratio V/Kapp.m increased with increasing n-alkyl carbon chain length for benzylamine oxidase, but decreased for methylamine oxidase. 6. Both enzymes showed similar sensitivity to carbonyl-group reagents, copper-chelating agents and other typical `diamine oxidase inhibitors'. 7. The stoicheiometry for the reaction catalysed by each enzyme was established. 8. The kinetics of methylamine oxidase were examined by varying the methylamine and oxygen concentrations in turn. A non-Ping Pong kinetic pattern with intersecting double-reciprocal plots was obtained, giving Km values of 10μm for O2 and 198μm for methylamine. The significance of this unusual kinetic behaviour is discussed. Similar experiments were not possible with the benzylamine oxidase, because it seemed to have an even lower Km for O2. 9. Both enzymes had similar subunit Mr values of about 80000, but the benzylamine oxidase behaved as if it were usually a dimer, Mr 136000, which under certain conditions aggregated to a tetramer, Mr 288000. Methylamine oxidase was mainly in the form of an octamer, Mr 510000, which gave rise quite readily to dimers of Mr 150000, and on gel filtration behaved as if the Mr was 286000.  相似文献   

9.
《朊病毒》2013,7(5):417-419
Mammalian prions with significant levels of specific infectivity can be formed in vitro from mixtures of prion protein (PrP) and cofactor molecules, but not from PrP alone. We recently isolated and identified the essential membrane phospholipid phosphatidylethanolamine (PE) as an endogenous cofactor for prion propagation in vitro.1 Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, et al. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A 2012; 109:8546 - 51; http://dx.doi.org/10.1073/pnas.1204498109; PMID: 22586108 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] In this article, we discuss the potential role of PE and other essential cofactor molecules as a molecular link between the processes of prion formation and prion-induced neurodegeneration.  相似文献   

10.
Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen- (N2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

11.
Rhizobium leguminosarum bv. trifolii WSM2012 (syn. MAR1468) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an ineffective root nodule recovered from the roots of the annual clover Trifolium rueppellianum Fresen growing in Ethiopia. WSM2012 has a narrow, specialized host range for N2-fixation. Here we describe the features of R. leguminosarum bv. trifolii strain WSM2012, together with genome sequence information and annotation. The 7,180,565 bp high-quality-draft genome is arranged into 6 scaffolds of 68 contigs, contains 7,080 protein-coding genes and 86 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

12.
《Fly》2013,7(4):155-159
ABSTRACT

Animals have modular cis-regulatory regions in their genomes, and expression of a single gene is often regulated by multiple enhancers residing in such a region. In the laboratory, and also in natural populations, loss of an enhancer can result in a loss of gene expression. Although only a few examples have been well characterized to date, some studies have suggested that an evolutionary gain of a new enhancer function can establish a new gene expression domain. Our recent study showed that Drosophila guttifera has more enhancers and additional expression domains of the wingless gene during the pupal stage, compared to D. melanogaster, and that these new features appear to have evolved in the ancestral lineage leading to D. guttifera.1 Koshikawa S, Giorgianni MW, Vaccaro K, Kassner VA, Yoder JH, Werner T, Carroll SB. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila. Proc Natl Acad Sci USA 2015; 112:7524-9; PMID:26034272; http://dx.doi.org/10.1073/pnas.1509022112[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Gain of a new expression domain of a developmental regulatory gene (toolkit gene), such as wingless, can cause co-option of the expression of its downstream genes to the new domain, resulting in duplication of a preexisting structure at this new body position. Recently, with the advancement of evo-devo studies, we have learned that the developmental regulatory systems are strikingly similar across various animal taxa, in spite of the great diversity of the animals' morphology. Even behind “new” traits, co-options of essential developmental genes from known systems are very common. We previously provided concrete evidence of gains of enhancer activities of a developmental regulatory gene underlying gains of new traits.1 Koshikawa S, Giorgianni MW, Vaccaro K, Kassner VA, Yoder JH, Werner T, Carroll SB. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila. Proc Natl Acad Sci USA 2015; 112:7524-9; PMID:26034272; http://dx.doi.org/10.1073/pnas.1509022112[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Broad occurrence of this scenario is testable and should be validated in the future.  相似文献   

13.
Ensifer medicae strain WSM1115 forms effective nitrogen fixing symbioses with a range of annual Medicago species and is used in commercial inoculants in Australia. WSM1115 is an aerobic, motile, Gram-negative, non-spore-forming rod. It was isolated from a nodule recovered from the root of burr medic (Medicago polymorpha) collected on the Greek Island of Samothraki. WSM1115 has a broad host range for nodulation and N2 fixation capacity within the genus Medicago, although this does not extend to all medic species. WSM1115 is considered saprophytically competent in moderately acid soils (pH(CaCl2) 5.0), but it has failed to persist at field sites where soil salinity exceeded 10 ECe (dS/m). Here we describe the features of E. medicae strain WSM1115, together with genome sequence information and its annotation. The 6,861,065 bp high-quality-draft genome is arranged into 7 scaffolds of 28 contigs, contains 6,789 protein-coding genes and 83 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   

14.
The aim of the research was to investigate the anti-bacterial potential of some N-substituted sulfonamides bearing benzodioxane moiety. The synthesis was started by reaction of N-2,3-dihydrobenzo[1,4]dioxin-6-amine with 4-acetamidobenzene-1-sulfonyl chloride in the presence of 10% aqueous Na2CO3 solution to yield N-(2,3-dihydrobenzo[1,4]-dioxin-6-yl)-4-acetamidobenzenesulfonamide, which was further reacted with alkyl/aralkyl halides in DMF and lithium hydride as a base to afford N-substituted-N-(2,3dihydro-[1,4]-benzodioxin-6-yl)-4-acetamidobenzenesulfonamides. All the synthesized compounds were characterized by spectral data (IR, 1H NMR, EI-MS, and HR-MS). The compounds were tested for antibacterial activity and most of them exhibited potent therapeutic potential against various Gram-negative and Gram-positive strains.  相似文献   

15.
The efficient regeneration of nicotinamide cofactors is an important process for industrial applications because of their high cost and stoichiometric requirements. In this study, the FDH1 β-subunit of NAD-dependent formate dehydrogenase from Methylobacterium extorquens AM1 was heterologously expressed in Escherichia coli. It showed water-forming NADH oxidase (NOX-2) activity in the absence of its α-subunit. The β-subunit oxidized NADH and generated NAD+. The enzyme showed a low NADH oxidation activity (0.28 U/mg enzyme). To accelerate electron transfer from the enzyme to oxygen, four electron mediators were tested; flavin mononucleotide, flavin adenine dinucleotide, benzyl viologen (BV), and methyl viologen. All tested electron mediators increased enzyme activity; addition of 250 μM BV resulted in the largest increase in enzyme activity (9.98 U/mg enzyme; a 35.6-fold increase compared with that in the absence of an electron mediator). Without the aid of an electron mediator, the enzyme had a substrate-binding affinity for NADH (K m) of 5.87 μM, a turnover rate (k cat) of 0.24/sec, and a catalytic efficiency (k cat/K m) of 41.31/mM/sec. The addition of 50 μM BV resulted in a 22.75-fold higher turnover rate (k cat, 5.46/sec) and a 2.64-fold higher catalytic efficiency (k cat/K m, 107.75/mM/sec).  相似文献   

16.
Kosakonia sacchari sp. nov. is a new species within the new genus Kosakonia, which was included in the genus Enterobacter. K sacchari is a nitrogen-fixing bacterium named for its association with sugarcane (Saccharum officinarum L.). K sacchari bacteria are Gram-negative, aerobic, non-spore-forming, motile rods. Strain SP1T (=CGMCC1.12102T=LMG 26783T) is the type strain of the K sacchari sp. nov and is able to colonize and fix N2 in association with sugarcane plants, thus promoting plant growth. Here we summarize the features of strain SP1T and describe its complete genome sequence. The genome contains a single chromosome and no plasmids, 4,902,024 nucleotides with 53.7% GC content, 4,460 protein-coding genes and 105 RNA genes including 22 rRNA genes, 82 tRNA genes, and 1 ncRNA gene.Key words : endophyte, Enterobacter, Kosakonia, nitrogen fixation, plant growth-promoting bacteria, sugarcane  相似文献   

17.
Burkholderia sprentiae strain WSM5005T is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of Burkholderia sprentiae strain WSM5005T, together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

18.
The electron transport chains in the membranes of bacteria and organelles generate proton-motive force essential for ATP production. The c-type cytochromes, defined by the covalent attachment of heme to a CXXCH motif, are key electron carriers in these energy-transducing membranes. In mitochondria, cytochromes c and c1 are assembled by the cytochrome c heme lyases (CCHL and CC1HL) and by Cyc2p, a putative redox protein. A cytochrome c1 mutant with a CAPCH heme-binding site instead of the wild-type CAACH is strictly dependent upon Cyc2p for assembly. In this context, we found that overexpression of CC1HL, as well as mutations of the proline in the CAPCH site to H, L, S, or T residues, can bypass the absence of Cyc2p. The P mutation was postulated to shift the CXXCH motif to an oxidized form, which must be reduced in a Cyc2p-dependent reaction before heme ligation. However, measurement of the redox midpoint potential of apocytochrome c1 indicates that neither the P nor the T residues impact the thermodynamic propensity of the CXXCH motif to occur in a disulfide vs. dithiol form. We show instead that the identity of the second intervening residue in the CXXCH motif is key in determining the CCHL-dependent vs. CC1HL-dependent assembly of holocytochrome c1. We also provide evidence that Cyc2p is dedicated to the CCHL pathway and is not required for the CC1HL-dependent assembly of cytochrome c1.THE c-type cytochromes, also referred to as cytochrome c, represent a universal class of heme-containing proteins that function as electron carriers in the energy-transducing pathways of bacteria, plastids, and mitochondria (Thöny-Meyer 1997; Nakamoto et al. 2000; Bonnard et al. 2010). Because cytochromes c carry a heme covalently attached to a CXXCH motif, they constitute an attractive object of study to address the question of cofactor protein assembly. The biochemical requirements for cytochrome c assembly were deduced from in vivo and in vitro studies, and the conclusion is that both apocytochromes c and heme are transported independently across at least one biological membrane and maintained as reduced prior to catalysis of the heme attachment reaction (Allen et al. 2003; Hamel et al. 2009; Kranz et al. 2009; Sanders et al. 2010). Bacterial cytochromes c are assembled in the periplasmic space, a compartment where cysteine pairs in proteins form disulfide bonds in reactions catalyzed by dedicated enzymes (Inaba 2009; Kadokura and Beckwith 2010). The current thinking holds that a c-type apocytochrome is a substrate of the disulfide bond-forming pathway, which introduces an intramolecular disulfide between the two cysteines of the CXXCH sequence (Allen et al. 2003; Sanders et al. 2010). This disulfide needs to be reduced to a dithiol to provide free sulfhydryls for the heme ligation. Consistent with this view is the fact that groups of specific oxido-reductases that constitute a transmembrane dithiol-disulfide relay from the cytosol to the periplasmic space have been shown to function as c-type cytochrome assembly factors (Allen et al. 2003; Kadokura et al. 2003; Mapller and Hederstedt 2006; Sanders et al. 2010). The proposal that the components of this pathway control the in vivo redox status of the CXXCH sulfhydryls has been inferred from the presence of motifs in their protein sequences that are consistent with a function in redox chemistry and also from the demonstration that their recombinant forms participate in dithiol–disulfide exchange reactions (Monika et al. 1997; Setterdahl et al. 2000). Moreover, the ability of exogenous thiol compounds to bypass the lack of these factors in vivo substantiates the view that the redox components have a disulfide-reducing activity in the pathway (e.g., Sambongi and Ferguson 1994; Fabianek et al. 1998; Beckett et al. 2000; Deshmukh et al. 2000; Bardischewsky and Friedrich 2001; Erlendsson and Hederstedt 2002; Erlendsson et al. 2003; Feissner et al. 2005; Turkarslan et al. 2008).While the role of these pathways is well established in bacteria, much less is known about the components that catalyze thiol/disulfide chemistry in the mitochondrial intermembrane space (IMS), which is topologically equivalent to the bacterial periplasm. By analogy with the bacterial pathways, the participation of redox-active factors that catalyze thiol formation is expected, as the mitochondrial IMS houses two c-type cytochromes, the soluble cytochrome c and the membrane-bound cytochrome c1, both of which function in respiration. In fungi, heme attachment to apocytochromes c and c1 is dependent upon the IMS resident cytochrome c and c1 heme lyases, CCHL and CC1HL, although the exact role of these lyases in the assembly process is still unclear (Dumont et al. 1987; Zollner et al. 1992). Conversion of apocytochrome to holocytochrome c depends only on CCHL, while apocytochrome c1 can be acted upon by both CCHL and CC1HL (Matner and Sherman 1982; Dumont et al. 1987; Stuart et al. 1990; Zollner et al. 1992; Bernard et al. 2003). In animals, apoforms of cytochromes c and c1 are assembled by a unique heme lyase, HCCS, which carries both the CCHL and CC1HL activities (Prakash et al. 2002; Schwarz and Cox 2002; Bernard et al. 2003).Cyc2p, a component first described as a mitochondrial biogenesis factor in yeast (Matner and Sherman 1982; Dumont et al. 1993; Pearce et al. 1998; Sanchez et al. 2001), was recently rediscovered in the context of cytochrome c1 maturation (Bernard et al. 2003). Cyc2p is located at the mitochondrial inner membrane with its C-terminal domain containing a non-covalently bound FAD exposed to the IMS (Bernard et al. 2005). A redox function for Cyc2p is likely based on the finding that a recombinant form of the molecule exhibits a NAD(P)H-dependent reductase activity (Bernard et al. 2005). However, as Cyc2p activity is not essential for the maturation process, a functional redundancy was postulated based on the fact that a cyc2-null mutant still assembles holoforms of cytochromes c and c1 (Bernard et al. 2005). The absolute requirement of Cyc2p was revealed via genetic analysis of the cyc2-null cyt1-34 combination that displays a synthetic respiratory-deficient phenotype with loss of holocytochrome c1 assembly (Bernard et al. 2005). The cyt1-34 mutation maps to the gene encoding cytochrome c1 and results in a CAPCH heme-binding site replacing the wild-type CAACH site (Bernard et al. 2005). The synthetic interaction is specific for the cyt1-34 allele carrying the A-to-P mutation and is not observed in a cyc2-null cyt1-48 strain carrying an A-to-D mutation at the heme-binding site of apocytochrome c1 (Bernard et al. 2005). The fact that Cyc2p becomes essential when the cytochrome c1 heme-binding site carries an A-to-P mutation suggests that the CXXCH motif could be the target of Cyc2p action in vivo. One possible interpretation for this observation is that the P residue alters the reactivity of the cysteinyl thiols to redox chemistry so that the apocytochrome c1 CAPCH heme-binding site occurs in an oxidized (disulfide) form, which must be reduced in a Cyc2p-dependent reaction before heme attachment can occur.In this article, we have undertaken a genetic approach to elucidate this pathway and searched for suppressors that alleviate the respiratory deficiency of the cyc2-null cyt1-34 strain. Either overexpression of CC1HL or replacement of the P mutation in the heme-binding site by H, L, S, or T residues restore the assembly of holocytochrome c1. In vitro measurement of redox potential of apoforms of CA(A/P/T)CH cytochrome c1 indicates that there is no change in the thermodynamic stability of the disulfide at the CXXCH motif that could account for the Cyc2p-dependent assembly of cytochrome c1. Genetic studies reveal that the replacement of the second A residue at the CAACH motif by H, L, P, S, and T residues is key in determining the conversion of apocytochrome c1 to its corresponding holoform via the CCHL and/or CC1HL-dependent pathway. We also demonstrate that Cyc2p is a component dedicated to the CCHL pathway and is not required for the CC1HL-dependent assembly of cytochrome c1. We propose that the CAPCH cytochrome c1 is strictly dependent upon CCHL and Cyc2p for its assembly but becomes a substrate of CC1HL upon overexpression of CC1HL or in the presence of H, L, S, or T mutations.  相似文献   

19.
20.
Cyanobacteria use sunlight and water to produce hydrogen gas (H2), which is potentially useful as a clean and renewable biofuel. Photobiological H2 arises primarily as an inevitable by-product of N2 fixation by nitrogenase, an oxygen-labile enzyme typically containing an iron-molybdenum cofactor (FeMo-co) active site. In Anabaena sp. strain 7120, the enzyme is localized to the microaerobic environment of heterocysts, a highly differentiated subset of the filamentous cells. In an effort to increase H2 production by this strain, six nitrogenase amino acid residues predicted to reside within 5 Å of the FeMo-co were mutated in an attempt to direct electron flow selectively toward proton reduction in the presence of N2. Most of the 49 variants examined were deficient in N2-fixing growth and exhibited decreases in their in vivo rates of acetylene reduction. Of greater interest, several variants examined under an N2 atmosphere significantly increased their in vivo rates of H2 production, approximating rates equivalent to those under an Ar atmosphere, and accumulated high levels of H2 compared to the reference strains. These results demonstrate the feasibility of engineering cyanobacterial strains for enhanced photobiological production of H2 in an aerobic, nitrogen-containing environment.Photobiologically produced hydrogen gas (H2) is a clean energy source with the potential to greatly supplement our use of fossil fuels (39). Whereas coal and oil are limited, cyanobacteria and eukaryotic microalgae can use inexhaustible sunlight as the energy source and water as the electron donor to produce H2 (42). This gas is generated either by hydrogenases (52) or as an inevitable by-product of N2 fixation by nitrogenases (49). In contrast to the reaction of hydrogenases which is reversible, nitrogenases catalyze the unidirectional production of H2, although with substantial energy input in the form of ATP (47). Under optimal N2-fixing conditions: N2 + 8 e + 8 H+ + 16 ATP → H2 + 2 NH3 + 16 (ADP + Pi), whereas, in the absence of N2 (e.g., under Ar), all electrons are allocated to proton reduction: 2 e + 2 H+ + 4 ATP → H2 + 4 (ADP + Pi). Thus, one expects to be able to increase the H2 production activity of nitrogenase by decreasing the electron allocation to N2 fixation.Nitrogenases are sensitive to inactivation by O2; however, N2-fixing cyanobacteria have developed mechanisms to protect these enzymes from photosynthetically generated oxygen (5). Of particular interest, Anabaena (also known as Nostoc) sp. strain PCC 7120 and some other filamentous cyanobacteria respond to combined-nitrogen deprivation by undergoing differentiation in which a subset of cells become heterocysts that provide a microaerobic environment, allowing nitrogenase to function in aerobic culture conditions. The nitrogenase-related (nif) genes are specifically expressed in heterocysts which lack O2-evolving photosystem II activity and are surrounded by a thick cell envelope composed of glycolipids and polysaccharides that impede the entry of O2 (56). Vegetative cells perform oxygenic photosynthesis and fix CO2. Heterocysts obtain carbohydrates from those cells and, in turn, provide them with fixed nitrogen.The molybdenum-containing nitrogenase of Anabaena sp. strain PCC 7120 consists of the Fe protein (encoded by nifH) and the MoFe protein (encoded by nifD and nifK). As in other organisms, the Fe protein is a homodimer containing a single [4Fe-4S] cluster and functions as an ATP-dependent electron donor to the MoFe protein. The latter is an α2β2 heterotetramer with each nifD-encoded α subunit coordinating the FeMo cofactor (FeMo-co; MoFe7S9X-homocitrate) that binds and reduces substrate, while α plus the nifK-encoded β subunits coordinate the [8Fe-7S] P-cluster (14). Additional nif genes are required for the biosynthesis of the metal clusters and maturation of the enzyme (40). The major nif gene cluster of Anabaena sp. strain PCC 7120 undergoes two rearrangements in the heterocyst to yield nifB-fdxN-nifSUHDK-(1 ORF)-nifENX-(2 ORFs)-nifW-hesAB-fdxH (19).One approach to increase H2 production by nitrogenase is to enhance the electron flux to proton reduction and away from N2 reduction. Although replacement of N2 by Ar is effective for increasing H2 production, this approach increases the operational cost for large-scale generation of H2. Mutagenesis offers an alternative mechanism to overcome N2 competition. The amino acid sequences of the MoFe α subunit are highly conserved among different phyla (18). The V75I substitution in the suspected gas channel of NifD2 of Anabaena variabilis (equivalent to V70 in A. vinelandii) resulted in greatly diminished N2 fixation, while allowing for H2 production rates (under N2) that were similar to those of wild-type cells under Ar (55). Significantly, however, the nonheterocyst nitrogenase of this strain, which is expressed mainly in vegetative cells under anaerobic conditions, is incompatible with O2-evolving photosynthesis and thus requires continuous anaerobic conditions along with a supply of exogenous reducing sugars for H2 production. Substitutions of selected amino acids in the vicinity of the FeMo-co active site within Azotobacter vinelandii nitrogenase were shown to eliminate or greatly diminish N2 fixation while, in some cases, allowing for effective proton reduction (2, 10, 17, 27, 36, 44, 45, 48). Therefore, certain amino acid exchanges near FeMo-co might produce variant MoFe proteins in heterocyst-forming Anabaena that redirect the electron flux through the enzyme preferentially to proton reduction so as to synthesize more H2 in the presence of N2 in an aerobic environment.To examine whether Anabaena sp. strain PCC 7120 nitrogenase can be modified to increase photobiological H2 production by effecting such a redirection, we evaluated in vivo H2 production and acetylene reduction rates of a series of cyanobacterial nifD site-directed mutants. We mutated six NifD residues (Fig. (Fig.1)1) predicted to lie within 5 Å of FeMo-co to create 49 variants using an Anabaena ΔNifΔHup (previously denoted ΔhupL) parental strain that lacks both an intact nifD and an uptake hydrogenase (34). In an atmosphere containing N2 and O2, several mutants exhibited significantly enhanced rates of in vivo H2 production and accumulated high levels of H2 compared to the reference strains.Open in a separate windowFIG. 1.Side-on (left) and Mo end-on (right) views of the predicted active site for nitrogenase of Anabaena sp. strain PCC 7120. The FeMo-co cluster, a [7Fe-8S-Mo-X-homocitrate] complex, where X is a central unidentified light atom (N, C, or O), and its two coordinating residues (C282 and H449) are shown in a ball-and-stick representation. Water molecules near the FeMo-co are indicated by isolated spheres in red. The side chains of the residues targeted for mutagenesis—Q193, H197, Y236, R284, S285, and F388—are shown in stick representation. Residues V362 through P367 are represented by lines. The Anabaena residues were mapped onto the corresponding residues from the crystal structure of the A. vinelandii enzyme (PDB file 1M1N). The figure was generated by using PyMOL (www.pymol.org/), with the following color scheme: Fe, orange; S, yellow; C, gray; N and central atom X, blue; O, red; and Mo, pink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号