首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification of domains in IL-16 critical for biological activity.   总被引:5,自引:0,他引:5  
IL-16 is a proinflammatory cytokine implicated in the pathogenesis of asthma and other conditions characterized by recruitment of CD4+ T cells to sites of disease. It is postulated that CD4 is an IL-16 receptor, although other receptors or coreceptors may exist. Among several known functions, IL-16 is a chemoattractant factor for CD4+ T cells and it inhibits MLR. We previously reported that an oligopeptide corresponding to the 16 C-terminal residues of human IL-16 inhibits chemoattractant activity. To identify functional domains with greater precision, shorter oligonucleotides containing native or mutated C-terminal IL-16 sequences were tested for IL-16 inhibition. Within the 16 C-terminal residues, the minimal peptide RRKS (corresponding to Arg106 to Ser109) was shown to mediate inhibition of IL-16 chemoattractant activity. Inhibition was lost when either arginine was substituted with alanine. Point mutations in IL-16 revealed that Arg107 is critical for chemoattractant activity, but MLR inhibition was unaffected by mutation of Arg107 or even deletion of the C-terminal tail through Arg106. Deletion of 12 or 22 N-terminal residues of IL-16 had no impact on chemoattractant activity, but MLR inhibition was reduced. Deletion of 16 C-terminal plus 12 N-terminal residues abolished both chemoattractant and MLR-inhibitory activity of IL-16. These data indicate that receptor interactions with IL-16 that activate T cell migration are not identical with those required for MLR inhibition, and suggest that both N-terminal and C-terminal domains in IL-16 participate in receptor binding or activation.  相似文献   

3.
Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion.  相似文献   

4.
Missense mutations in the collagen triple helix that replace one Gly residue in the (Gly-X-Y)(n) repeating pattern by a larger amino acid have been shown to delay triple helix folding. One hypothesis is that such mutations interfere with the C- to N-terminal directional propagation and that the identity of the residues immediately N-terminal to the mutation site may determine the delay time and the degree of clinical severity. Model peptides are designed to clarify the role of tripeptide sequences N-terminal to the mutation site, with respect to length, stability, and nucleation propensity, to complete triple helix folding. Two sets of peptides with different N-terminal sequences, one with the natural sequence alpha1(I) 886-900, which is just adjacent to the Gly(901) mutation, and one with a GPO(GAO)(3) sequence, which occurs at alpha1(I) 865-879, are studied by CD and NMR. Placement of the five tripeptides of the natural alpha1(I) collagen sequence N-terminal to the Gly to Ala mutation site results in a peptide that is folded only C-terminal to the mutation site. In contrast, the presence of the Hyp-rich sequence GPO(GAO)(3) N-terminal to the mutation allows complete refolding in the presence of the mutation. The completely folded peptide contains an ordered central region with unusual hydrogen bonding while maintaining standard triple helix structure at the N- and C-terminal ends. These peptide results suggest that the location and sequences of downstream regions favorable for renucleation could be the key factor in the completion of a triple helix N-terminal to a mutation.  相似文献   

5.
Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer’s disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12–16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12–16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12–16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1–7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1–7)C and qf-Aβ(12–16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.  相似文献   

6.
DNA and RNA helicases of superfamily I are characterized by seven conserved motifs. The five N-terminal motifs are separated from the two C-terminal ones by a spacer that is highly variable in both sequence and length, suggesting the existence of two distinct domains. Using computer methods for protein sequence analysis, we show that PhoH, an ATP-binding protein that is conserved in Escherichia coli and Mycobacterium leprae, is homologous to the putative N-terminal domain of the helicases, whereas the putative E. coli protein YjhR is homologous to the C-terminal domain. These findings suggest that the N-and C-terminal domains of superfamily I helicases have distinct activities, with only the N-terminal domain having the ATPase activity. It is speculated that PhoH and YjhR have evolved from helicases through deletion of the portions of the helicase genes coding for the C- and N-terminal domain, respectively.  相似文献   

7.
Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states (“closed” vs. “open”) of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of “closed” syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1–depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the “open” syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between “closed” syntaxin-1A and Munc18-1, whereas the same mutation in the “open” syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane.  相似文献   

8.
In previous studies we have suggested that spatial proximity of the C- and N-terminal domains of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) may be critical for the channel gating mechanism. In the present study we have examined the sites of C-N interaction in more detail. We report that deletion mutations within the S4-S5 linker (amino acids 2418-2437) prevent co-immunoprecipitation of the C- and N-terminal domains, inhibit channel activity and enhance IP(3) binding. We also show that a region of the C-terminal tail (amino acids 2694-2721), predicted to be a coiled-coil, is also required for channel activity. Circular dichroism spectroscopy and gel filtration studies confirm that this region has a helical structure with the ability to form tetramers. We propose a model in which IP(3)-induced conformational changes in the N-terminal domain are mechanically transmitted to the opening of the pore through an attachment to the S4-S5 linker. The coiled-coil domain in the C-terminal tail may play a critical role in maintaining the structural integrity of the channel.  相似文献   

9.
10.
We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3’-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3’-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3’-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly, except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of the N-terminal or C-terminal domains. [BMB Reports 2013; 46(1):53-58]  相似文献   

11.
The structural and functional organization of the herpes simplex virus type I (HSV-1) DNA polymerase enzyme of strain ANG was studied by a combination of sequence and immunobiochemical analyses. Comparison of the HSV-1 ANG DNA polymerase sequence with those of pro- and eukaryotic DNA polymerases resulted in the allocation of eleven conserved regions within the HSV-1 DNA polymerase. From the analysis of all currently identified mutations of temperature-sensitive and drug-resistant HSV-1 DNA polymerase mutants as well as from the degree of conservancy observed, it could be deduced that the amino-acid residues 597–961, comprising the homologous sequence regions IV–IX, constitute the major structural components of the catalytic domain of the enzyme which should accommodate the sites for polymerizing and 3′-to-5′ exonucleolytic functions. Further insight into the structural organization was gained by the use of polyclonal antibodies responding specifically to the N-terminal, central and C-terminal polypeptide domains of the ANG polymerase. Each of the antisera was able to immunostain as well as to immunoprecipitate a viral polypeptide of 132 ± 5 kDa that corresponded well to the molecular mass of 136 kDa predicted from the coding sequences. Enzyme-binding and neutralization studies confirmed that both functions, polymerase and 3′-to-5′ exonuclease, are intimately related to each other, and revealed that, in addition to the sequences of the proposed catalytic domain, the very C-terminal sequences, except for amino-acid residues 1072–1146, are important for the catalytic functions of the enzyme, most likely effecting the binding to DNA.  相似文献   

12.
13.
Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt alpha-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion.  相似文献   

14.
Inteins are autocatalytic protein cleavage and splicing elements. A cysteine to alanine mutation at the N-terminal of inteins inhibits splicing and isolates the C-terminal cleavage reaction. Experiments indicate an enhanced C-terminal cleavage reaction rate upon decreasing the solution pH for the cleavage mutant, which cannot be explained by the existing mechanistic framework. We use intein crystal structure data and the information about conserved amino acids to perform semiempirical PM3 calculations followed by high-level density functional theory calculations in both gas phase and implicit solvent environments. Based on these calculations, we propose a detailed “low pH” mechanism for intein C-terminal cleavage. Water plays an important role in the proposed reaction mechanism, acting as an acid as well as a base. The protonation of the scissile peptide bond nitrogen by a hydronium ion is an important first step in the reaction. That step is followed by the attack of the C-terminal asparagine side chain on its carbonyl carbon, causing succinimide formation and simultaneous peptide bond cleavage. The computed reaction energy barrier in the gas phase is ~33 kcal/mol and reduces to ~25 kcal/mol in solution, close to the 21 kcal/mol experimentally observed at pH 6.0. This mechanism is consistent with the observed increase in C-terminal cleavage activity at low pH for the cleavage mutant of the Mycobacterium tuberculosis RecA mini-intein.  相似文献   

15.
Mutations in the polymerase basic 2 (PB2) gene of avian influenza viruses are important signatures for their adaptation to mammalian hosts. Various adaptive mutations have been identified around the 627 and nuclear localization sequence (NLS) domains of PB2 protein, and these mutations contribute to the replicative ability of avian influenza viruses. However, few studies have focused on adaptive mutations in other regions of PB2. In this study, we investigated the functional roles of the D253N mutation in PB2 in an H9N2 virus. This mutation was found to affect an amino acid residue in the middle domain of the PB2 protein. The virus with the D253N mutation showed higher polymerase activity and transiently increased viral replication in human cells. However, the mutant did not show significant differences in viral replication in the respiratory tract of mice upon infection. Our results supported that the D253N mutation in the middle domain of PB2, similar to mutations at the 627 and NLS domains, specifically contributed to the replication of avian influenza viruses in human cells.  相似文献   

16.
Arginine kinase (AK) catalyzes the reversible phosphorylation of arginine by ATP, yielding the phosphoarginine. Domain-domain interactions may be very important to the structure and functions of many multidomain proteins. However, little is known about the role of amino acid residues located in the linker between the N- and C-terminal domains in the structural stability and functions of multidomain proteins. In this research, A series mutation of conserved residue Ile121 located in the linker were mutated to explore its roles in the activity and structural stability of AK. The mutations I121D and I121K led to pronounced loss of activity and structural stability. Furthermore, these mutations also led to serious aggregation during heat-and GdnHCl-induced denaturation and refolding from the GdnHCl-denatured state. More importantly, all the mutantions except I121L could not successfully recover their activities by dilution-initiated refolding, and showed significant decreased rate constant during AK refolding. While the mutation I121L almost had no effect on AK activity and structural stability. These results suggested that mutations of the residue I121 in the linker might affect the correct positioning of the domains and thus disrupt the efficient recognition and interactions between the N- and C-terminal domains.  相似文献   

17.
In this work we have studied the partial catalytic reactions in MDR1 variants carrying mutations in the conserved Walker A region (K433M and K1076M) of either the N-terminal or C-terminal ABC domain. Both mutations have been demonstrated to cause a loss of drug transport, drug-stimulated ATPase, and vanadate-dependent nucleotide trapping activity. Here we show that these mutants still allow transition state formation (nucleotide trapping) when fluoro-aluminate or beryllium fluoride is used as a complex-stabilizing anion. Drug stimulation of nucleotide trapping was found to be preserved in both mutants. Limited trypsin digestion revealed that whenever MDR1-nucleotide trapping occurred, both ABC domains were involved in the formation of the catalytic intermediates. Our results show that details of the MDR1-ATPase cycle can be studied even in ATPase-negative mutants. These data also demonstrate that the conformational alteration caused by a mutation in one of the ABC domains is propagated to the other, nonmutated domain, indicating a tight coupling between the functioning of the two ABC domains.  相似文献   

18.
Polyclonal antibodies responding specifically to the N-terminal, central and C-terminal polypeptide domains of the herpes simplex virus type I (HSV-1) DNA polymerase of strain Angelotti were generated. Each of the five different rabbit antisera reacted specifically with a viral 132 +/- 5-kDa polypeptide as shown by immunoblot analysis. Enzyme binding and inhibition studies revealed that antibodies raised to the central and the C-terminal domains of the protein inhibited the polymerizing activity by 70-90%, respectively, which is well in line with the proposed site of the catalytic center of the enzyme and with the possible involvement of these polypeptide chains in DNA-protein interactions. In agreement with this, antibodies directed towards the N-terminal domain bound to the enzyme without effecting the enzymatic activity. The strong binding but low inhibitory properties of antibodies directed to the polypeptide region between residues 1072 and 1146 confirms previous suggestions that these C-terminal sequences, which share no homology to the Epstein-Barr virus DNA polymerase, are less likely involved in the building of the polymerase catalytic site. Antibodies, raised to the very C terminus of the polymerase (EX3), were successfully used to identify a single 132 +/- 5-kDa polypeptide, which coeluted with the HSV DNA polymerase activity during DEAE-cellulose chromatography, and were further shown to precipitate a major viral polypeptide of identical size. From the presented data it can be concluded that the native enzyme consists of a single polypeptide with a size predicted from the long open reading frame of the HSV-1 DNA polymerase gene.  相似文献   

19.
Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an α-β hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent Vmax than the full-length form without changes in Km, which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic α-helix (bold) within amino acid residues 10–24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic α-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.  相似文献   

20.
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号