共查询到20条相似文献,搜索用时 46 毫秒
1.
Interpreting Geographic Variation in Life-History Traits 总被引:10,自引:1,他引:10
The geographic variation in the length of the larval periodand the size at metamorphosis of the wood frog,Rana sylvatica,is examined for populations in the tundra of Canada, the mountainsof Virginia, and the lowlands of Maryland. We argue that theobserved differences in developmental plasticity, heriisbilitiesand genetic covariances of traits among localities result fromdifferential selection pressures in each environment, and arerelated to the physiological constraints inherent in developmentand to the degree of compromise between the timing and sizeat metamorphosis allowed in each environment. In Maryland populationsfitness has been maximized by evolutionary changes in size alone;body size in this population is canalized, has low heritabilityand is highly correlated with juvenile survival relative todevelopmental time. In Canada, minimum developmental time yieldsmaximum fitness; the length of the larval period in this populationis canalized and genetically monomorphic relative to body size.In contrast, fitness in the Virginia populations has been determinedby correlated and pleiotropic effects of genes on both developmentaltime and larval body size, and both traits are equally canalized,affect juvenile survivorship equally and display moderate heritabilities.These results stress the importance of interpreting variationin life-history traits relative to constraints inherent in developmentand those imposed by the environment. Heritability and survivorshipdata support the general notion that fitness traits should havelow levels of additive genetic variation, but also suggest thatantagonistic pleiotropy may act to preserve genetic variationin fitness traits under simultaneous selection, and cautionagainst inferring evolutionary importance of individual traitswithout considering the possible presence of pleiotropy. 相似文献
2.
3.
A fundamental function of the respiratory system is the supply of oxygen to meet metabolic demand. Morphological constraints on the supply of oxygen, such as the structure of the lung, have previously been studied in birds. Recent research has shown that uncinate processes (UP) are important respiratory structures in birds, facilitating inspiratory and expiratory movements of the ribs and sternum. Uncinate process length (UPL) is important for determining the mechanical advantage for these respiratory movements. Here we report on the relationship between UPL, body size, metabolic demand and locomotor specialisation in birds. UPL was found to scale isometrically with body mass. Process length is greatest in specialist diving birds, shortest in walking birds and intermediate length in all others relative to body size. Examination of the interaction between the length of the UP and metabolic demand indicated that, relative to body size, species with high metabolic rates have corresponding elongated UP. We propose that elongated UP confer an advantage on the supply of oxygen, perhaps by improving the mechanical advantage and reducing the energetic cost of movements of the ribs and sternum. 相似文献
4.
Enterotoxin production is a key factor in Bacillus cereus food poisoning. Herein, the effect of the growth rate (μ) on B. cereus toxin production when grown on sucrose was studied and the Hemolytic BL enterotoxin (HBL) and nonhemolytic enterotoxin (Nhe)
production by B. cereus was compared according to carbohydrate at μ = 0.2 h−1. The anaerobic growth was carried out on continuous cultures in synthetic medium supplemented with glucose, fructose, sucrose,
or an equimolar mixture of glucose and fructose. Concerning the HBL and Nhe enterotoxin production: (1) the highest enterotoxin
production has occurred at μ = 0.2 h−1 when growing on sucrose; (2) HBL production was repressed when glucose was consumed and the presence of fructose (alone or
in mixture) cancelled glucose catabolite repression; (3) the consumption of sucrose increased Nhe production, which was not
affected by the catabolite repression. Furthermore, analysis of the fermentative metabolism showed that whatever the μ or
the carbon source, B. cereus used the mixed acid fermentation to ferment the different carbohydrates. The enterotoxin productions by this strain at μ
= 0.2 h−1 are highly influenced by the carbohydrates that do not involve any fermentative metabolism changes. 相似文献
5.
To examine the effect of ontogeny on metabolic depression in the cunner (Tautogolabrus adspersus), and to understand how ontogeny and the ability to metabolically depress influence this species'' upper thermal tolerance: 1) the metabolic rate of 9°C-acclimated cunner of three size classes [0.2–0.5 g, young of the year (YOY); 3–6 g, small; and 80–120 g, large (adult)] was measured during a 2°C per day decrease in temperature; and 2) the metabolic response of the same three size classes of cunner to an acute thermal challenge [2°C h−1 from 10°C until Critical Thermal Maximum, CTMax] was examined, and compared to that of the Atlantic cod (Gadus morhua). The onset-temperature for metabolic depression in cunner increased with body size, i.e. from 5°C in YOY cunner to 7°C in adults. In contrast, the extent of metabolic depression was ∼80% (Q10 = ∼15) for YOY fish, ∼65% (Q10 = ∼8) for small fish and ∼55% (Q10 = ∼5) for adults, and this resulted in the metabolic scaling exponent (b) gradually increasing from 0.84 to 0.92 between 9°C to 1°C. All size classes of cunner had significantly (approximately 60%) lower routine metabolic rates at 10°C than Atlantic cod. However, there was no species'' difference in the temperature-induced maximum metabolic rate, and this resulted in factorial metabolic scope values that were more than two-fold greater for cunner, and CTMax values that were 6–9°C higher (∼21 vs. 28°C). These results: 1) show that ontogeny influences the temperature of initiation and the extent of metabolic depression in cunner, but not O2 consumption when in a hypometabolic state; and 2) suggest that the evolution of cold-induced metabolic depression in this northern wrasse species has not resulted in a trade-off with upper thermal tolerance, but instead, an enhancement of this species'' metabolic plasticity. 相似文献
6.
In a previous theoretical study we investigated whether adaptive or non-adaptive processes are more important in the evolution of senescence. We built a model that combined both processes and found that mutation accumulation is important only at those ages where mortality has a negligible impact on fitness. This model, however, was limited to haploid organisms. Here we extend our model by introducing diploidy and sexual reproduction. We assume that only recessive (mutated) homozygotes experience detrimental effects. Our results corroborate our previous conclusions, confirming that life histories are largely determined by adaptive processes. We also found that the equilibrium frequencies of mutated alleles are at higher values than in haploid model, because mutations in heterozygotes are hidden for directional selection. Nevertheless, the equilibrium frequencies of recessive homozygotes that make mutations visible to selection are very similar to the equilibrium frequencies of these alleles in our haploid model. Diploidy and sexual reproduction with recombination slows down approaching selection-mutation balance. 相似文献
7.
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. 相似文献
8.
An important factor affecting the life-history of an organism is parental investment in reproduction: reproductive decisions
are almost invariably costly. Therefore, reproductive decisions should be beneficial in terms of increased offspring number
or fitness. For example, egg laying decisions in many insects can influence resource availability of the offspring through
changes in the larval density, and resource availability will have effects on many life-history traits. Here we studied whether
female reproductive decisions affect offspring fitness in Callosobruchus maculatus seed beetles. Females laid more eggs on black-eye beans than on mung beans. However, when the difference in the surface area
of the beans was accounted for, the number of eggs was not higher in black-eye beans. This together with the poisson distribution
of eggs on each of the bean types suggests that females tend to lay their eggs randomly. We found that development time was
longer, larval mortality lower and adult survival higher in black-eye beans. We also found interactions between bean type
and larval density on size of the offspring such that in mung beans the emergence mass and pronotum width decreased with increasing
larval density, but in black-eye beans larval density did not affect the size measures. We conclude that when there is a risk
that larval denisty will become high within a bean and there is variable resources available, there exist clear benefits that
females might obtain by choosing black-eye beans as a resource for their offspring. However, in contrast to many earlier studies,
our results suggest that females may not be making any active oviposition decisions. Therefore, to unequivocally determine
whether females do capitalise the potential benefits by active decision making, some further experimentation is required. 相似文献
9.
Anna Oleksiak Miros?awa Mańko Albert Postma Ineke J. M. van der Ham Albert V. van den Berg Richard J. A. van Wezel 《PloS one》2010,5(3)
Background
It is well established that foveating a behaviorally relevant part of the visual field improves localization performance as compared to the situation where the gaze is directed elsewhere. Reduced localization performance in the peripheral encoding conditions has been attributed to an eccentricity-dependent increase in positional uncertainty. It is not known, however, whether and how the foveal and peripheral encoding conditions can influence spatial interval estimation. In this study we compare observers'' estimates of a distance between two co-planar dots in the condition where they foveate the two sample dots and where they fixate a central dot while viewing the sample dots peripherally.Methodology/Principal Findings
Observers were required to reproduce, after a short delay, a distance between two sample dots based on a stationary reference dot and a movable mouse pointer. When both sample dots are foveated, we find that the distance estimation error is small but consistently increases with the dots-separation size. In comparison, distance judgment in peripheral encoding condition is significantly overestimated for smaller separations and becomes similar to the performance in foveal trials for distances from 10 to 16 degrees.Conclusions/Significance
Although we find improved accuracy of distance estimation in the foveal condition, the fact that the difference is related to the reduction of the estimation bias present in the peripheral conditon, challenges the simple account of reducing the eccentricity-dependent positional uncertainty. Contrary to this, we present evidence for an explanation in terms of neuronal populations activated by the two sample dots and their inhibitory interactions under different visual encoding conditions. We support our claims with simulations that take into account receptive fields size differences between the two encoding conditions. 相似文献10.
Jana S. Petermann Christine B. Müller Christiane Roscher Alexandra Weigelt Wolfgang W. Weisser Bernhard Schmid 《PloS one》2010,5(8)
The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field. We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids, parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of consumers. 相似文献
11.
12.
The autolysin AcmA of Lactococcus lactis was shown to be degraded by the extracellular lactococcal proteinase PrtP. Autolysis, as evidenced by reduction in optical density of a stationary-phase culture and concomitant release of intracellular proteins, was greatly reduced when L. lactis MG1363 cells expressed the cell wall-anchored lactococcal proteinase PrtP of the PI-type caseinolytic specificity (PI). On the other hand, lactococcal strains that did not produce the proteinase showed a high level of autolysis, which was also observed when the cells produced the secreted form of PI or a cell wall-anchored proteinase with PIII-type specificity. Autolysis was also increased when MG1363 expressed the cell wall-anchored hybrid PI/PIII-type proteinase PIac. Zymographic analysis of AcmA activity during stationary phase showed that AcmA was quickly degraded by PI and much more slowly by PrtP proteinases with PIII-type and intermediate specificities. Autolysis of L. lactis by AcmA was influenced by the specificity, amount, and location of the lactococcal proteinase. No autolysis was observed when the various proteinases were expressed in an L. lactis acmA deletion mutant, indicating that PrtP itself did not cause lysis of cells. The chain length of a strain was significantly shortened when the strain expressed a cell wall-anchored active proteinase. 相似文献
13.
14.
15.
Prey Escape Direction is Influenced by the Pivoting Displays of Flush-Pursuing Birds 总被引:2,自引:0,他引:2
Piotr G. Jaboski & Caitríona McInerney† 《Ethology : formerly Zeitschrift fur Tierpsychologie》2005,111(4):381-396
Painted redstart, Myioborus pictus, and its congeners in Central and South America, belong to a small fraction of insectivorous flush‐pursuing birds. Unlike most of the small insectivorous birds, which glean prey from substrates, the flush pursuers spread and pivot their conspicuously patterned tails and wings. This display triggers prey escape flights which are hypothesized to occur through visual stimulation of prey escape circuits [giant descending neuron cluster (GDNC) in Diptera] sensitive to the looming motion of an approaching bird, translational motion of a pivoting body with widely spread tail and contrast of the white‐black plumage pattern. In this paper, data from field observations of redstarts and experiments with bird models show an increase in the frequency of prey escapes away from the strong visual stimulation of an open tail, and in the direction opposite to that of the horizontal translational motion present in the pivots. We discuss how the effect on prey escape direction may enhance prey interception capabilities of redstarts during aerial pursuits. Combined with an earlier study the results show that, unlike the movements of typical gleaner–foragers, the flush displays by redstarts affect prey escape direction in a manner that may facilitate prey tracking and capture by birds. Because the GDNs, which mediate escape initiation, are not sensitive to motion direction, we hypothesize that other neurons, in addition to the GDNs, are involved in influencing the direction of escape responses. 相似文献
16.
Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. 相似文献
17.
Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic “plant beneficial” lineages. The differences from the temperate zone in the bacterial community of tropical forest litter may be partly a product of its differing chemistry, although the unvarying climate might also play a role, as might interactions with other organisms such as fungi. The single genus Burkholderia may be seen as potentially playing a major role in decomposition and nutrient cycling in tropical forests, but apparently not in temperate forests. 相似文献
18.
Cláudia A. N. Kobayashi Aline L. Leite Camila Peres-Buzalaf Juliane G. Carvalho Gary M. Whitford Eric T. Everett Walter L. Siqueira Marília A. R. Buzalaf 《PloS one》2014,9(12)
Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR) was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05). Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue. 相似文献
19.