首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H2O2) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H2O2 stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.  相似文献   

2.
The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen.  相似文献   

3.
硫化氢(H_2S)是继一氧化氮(NO)和一氧化碳(CO)后发现的第3种气态信号分子,但其细菌生理学研究才刚刚起步。本文根据作者对奥内达希瓦氏菌的研究,结合新近文献,就细菌的H_2S产生机理及其生理功能作了较为全面的阐述。细菌的H_2S产生途径主要有2条,一是通过降解半胱氨酸产生,二是通过厌氧呼吸产生。产生的H_2S除可为互生性微生物提供能源、供氢体和无机矿质营养外,还具有抑制竞争性微生物的生长,有效占领生态位的作用。H_2S在氧化应答中也起着重要的作用,一方面可抑制过氧化氢酶活性,增加过氧化氢对细菌的杀灭效果;另一方面可作为信号分子激活细菌的氧化应答,诱导拮抗系统的表达,保护细胞免受氧化损伤。这两种看似"矛盾"的作用与H_2S的处理时间有关:短时间处理以抑制为主,而延长处理时间则以保护为主。细菌H_2S产生机理及生理功能的阐明可为硫元素生物地球化学循环规律的揭示和感染性病原细菌的控制提供有益的参考。  相似文献   

4.
Large numbers of bacteria coexist in the oral cavity. Streptococcus sanguinis, one of the major bacteria in dental plaque, produces hydrogen peroxide (H2O2), which interferes with the growth of other bacteria. Streptococcus mutans, a cariogenic bacterium, can coexist with S. sanguinis in dental plaque, but to do so, it needs a means of detoxifying the H2O2 produced by S. sanguinis. In this study, we investigated the association of three oxidative stress factors, Dpr, superoxide dismutase (SOD), and AhpCF, with the resistance of S. sanguinis to H2O2. The knockout of dpr and sod significantly increased susceptibility to H2O2, while the knockout of ahpCF had no apparent effect on susceptibility. In particular, dpr inactivation resulted in hypersensitivity to H2O2. Next, we sought to identify the factor(s) involved in the regulation of these oxidative stress genes and found that PerR negatively regulated dpr expression. The knockout of perR caused increased dpr expression levels, resulting in low-level susceptibility to H2O2 compared with the wild type. Furthermore, we evaluated the roles of perR, dpr, and sod when S. mutans was cocultured with S. sanguinis. Culturing of the dpr or sod mutant with S. sanguinis showed a significant decrease in the S. mutans population ratio compared with the wild type, while the perR mutant increased the ratio. Our results suggest that dpr and sod in S. mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2 in regulating the expression of Dpr.  相似文献   

5.
Ralstonia solanacearum, a soil-borne bacterium causes bacterial wilt, is a lethal disease of eggplant (Solanum melongena L.). However, the first line of defense mechanism of R. solanacearum infection remains unclear. The present study focused on the role of induced H2O2, defense-related enzymes of ascorbate-glutathione pathway variations in resistant and susceptible cultivars of eggplant under biotic stress. Fifteen cultivars of eggplant were screened for bacterial wilt resistance, and the concentration of antioxidant enzymes were estimated upon infection with R. solanacearum. A quantitative real-time PCR was also carried out to study the expression of defense genes. The concentration of H2O2 in the pathogen inoculated seedlings was two folds higher at 12 h after pathogen inoculation compared to control. Antioxidant enzymes of ascorbate-glutathione pathway were rapidly increased in resistant cultivars followed by susceptible and highly susceptible cultivars upon pathogen inoculation. The enzyme activity of ascorbate-glutathione pathway correlates by amplification of their defense genes along with pathogenesis-related protein-1a (PR-1a). The expressions of defense genes increased 2.5?3.5 folds in resistant eggplant cultivars after pathogen inoculation. The biochemical and molecular markers provided an insight to understand the first line of defense responses in eggplant cultivars upon inoculation with the pathogen.  相似文献   

6.
Shewanella oneidensis is a model species for aquatic ecosystems and plays an important role in bioremediation, biofuel cell manufacturing and biogeochemical cycling. S. oneidensis MR-1 is able to generate hydrogen sulfide from various sulfur species; however, its catalytic kinetics have not been determined. In this study, five in-frame deletion mutants of S. oneidensis were constructed and their H2S-producing activities were analyzed. SirA and PsrA were the two major contributors to H2S generation under anoxic cultivation, and the optimum SO32− concentration for sulfite respiration was approximately 0.8 mM, while the optimum S2O32− concentration for thiosulfate respiration was approximately 0.4 mM. Sulfite and thiosulfate were observed to interfere with each other during respiration, and a high concentration of sulfite or thiosulfate chelated extracellular free-iron but did not repress the expression of sirA or psrA. Nitrite and nitrate were two preferred electron acceptors during anaerobic respiration; however, under energy-insufficient conditions, S. oneidensis could utilize multiple electron acceptors simultaneously. Elucidiating the stoichiometry of H2S production in S. oneidensis would be helpful for the application of this species in bioremediation and biofuel cell manufacturing, and would help to characterize the ecophysiology of sulfur cycling.  相似文献   

7.
8.
Green tea polyphenols (GTP) are widely believed to function as antioxidants and antimicrobial agents. Here we observed that GTP and epigallocatechin gallate, the most abundant catechin in GTP, could also function as prooxidants and produce hydrogen peroxide (H2O2) to inhibit the growth of Pseudomonas aeruginosa. pH value of the medium was the key factor that affected prooxidant versus antioxidant property of GTP. Under weakly acidic conditions (pH 5.5–6.5), GTP showed antioxidant activity by eliminating H2O2; whereas, under neutral and weakly alkaline conditions (pH 7.0–8.0), GTP showed prooxidant activity and inhibited the growth of P. aeruginosa. Furthermore, we studied the effects of GTP on gene expression profiles of a few oxidative stress-related genes by quantitative real-time PCR analysis. After 10 min to 1 h of exposure under weakly alkaline condition, GTP significantly up-regulated expression levels of katB, sodM, ohr, lexA, and recN gene. These findings highlight that the pH-dependent H2O2 production by GTP contributes to the antibacterial activity and can induce oxidative stress-related responses in P. aeruginosa.  相似文献   

9.
Cellular oxidative stress responses are caused in many ways, but especially by disease and environmental stress. After the initial burst of reactive oxygen species (ROS), the effective elimination of ROS is crucial for the survival of organisms and is mediated by antioxidant defense mechanisms. In this paper, we investigate the possible antioxidant function of Penaeus monodon Receptor for Activated C Kinase-1 (Pm-RACK1). When Pm-RACK1 was over-expressed in Escherichia coli cells or Spodoptera frugiperda (Sf9) insect cells exposed to H2O2, it significantly protected the cells from oxidative damage induced by H2O2. When recombinant Pm-RACK1 protein was expressed as a histidine fusion protein in E. coli and purified with a Ni2+-column it possessed antioxidant functions that protected DNA from metal-catalyzed oxidation. Shrimp (Penaeus vannamei) held at an alkaline pH had a much higher hepatopancreatic expression of Pm-RACK1 than in those held at pH 7.4. The exposure of shrimp to alkaline pH is also known to increase ROS production. These results provide strong evidence that Pm-RACK1 can participate in the shrimp antioxidant response induced by the formation of ROS.  相似文献   

10.
11.
When Escherichia coli grows on conventional substrates, it continuously generates 10 to 15 μM/s intracellular H2O2 through the accidental autoxidation of redox enzymes. Dosimetric analyses indicate that scavenging enzymes barely keep this H2O2 below toxic levels. Therefore, it seemed potentially problematic that E. coli can synthesize a catabolic phenylethylamine oxidase that stoichiometrically generates H2O2. This study was undertaken to understand how E. coli tolerates the oxidative stress that must ensue. Measurements indicated that phenylethylamine-fed cells generate H2O2 at 30 times the rate of glucose-fed cells. Two tolerance mechanisms were identified. First, in enclosed laboratory cultures, growth on phenylethylamine triggered induction of the OxyR H2O2 stress response. Null mutants (ΔoxyR) that could not induce that response were unable to grow. This is the first demonstration that OxyR plays a role in protecting cells against endogenous H2O2. The critical element of the OxyR response was the induction of H2O2 scavenging enzymes, since mutants that lacked NADH peroxidase (Ahp) grew poorly, and those that additionally lacked catalase did not grow at all. Other OxyR-controlled genes were expendable. Second, phenylethylamine oxidase is an unusual catabolic enzyme in that it is localized in the periplasm. Calculations showed that when cells grow in an open environment, virtually all of the oxidase-generated H2O2 will diffuse across the outer membrane and be lost to the external world, rather than enter the cytoplasm where H2O2-sensitive enzymes are located. In this respect, the periplasmic compartmentalization of phenylethylamine oxidase serves the same purpose as the peroxisomal compartmentalization of oxidases in eukaryotic cells.  相似文献   

12.
Clostridium acetobutylicum, an obligate anaerobe, grows normally under continuous-O2-flow culture conditions, where the cells consume O2 proficiently. An O2-responsive NADH:rubredoxin oxidoreductase operon composed of three genes (nror, fprA2, and dsr), encoding NROR, functionally uncharacterized flavoprotein A2 (FprA2), and the predicted superoxide reductase desulfoferrodoxin (Dsr), has been proposed to participate in defense against O2 stress. To functionally characterize these proteins, native NROR from C. acetobutylicum, recombinant NROR (rNROR), FprA2, Dsr, and rubredoxin (Rd) expressed in Escherichia coli were purified. Purified native NROR and rNROR both exhibited weak H2O2-forming NADH oxidase activity that was slightly activated by Rd. A mixture of NROR, Rd, and FprA2 functions as an efficient H2O-forming NADH oxidase with a high affinity for O2 (the Km for O2 is 2.9 ± 0.4 μM). A mixture of NROR, Rd, and Dsr functions as an NADH-dependent O2 reductase. A mixture of NROR, Rd, and rubperoxin (Rpr, a rubrerythrin homologue) functions as an inefficient H2O-forming NADH oxidase but an efficient NADH peroxidase with a low affinity for O2 and a high affinity for H2O2 (the Kms for O2 and H2O2 are 303 ± 39 μM and ≤1 μM, respectively). A gene encoding Rd is dicistronically transcribed with a gene encoding a glutaredoxin (Gd) homologue, and the expression levels of the genes encoding Gd and Rd were highly upregulated upon exposure to O2. Therefore, nror operon enzymes, together with Rpr, efficiently function to scavenge O2, O2, and H2O2 by using an O2-responsive rubredoxin as a common electron carrier protein.  相似文献   

13.
Catechol-2,3-dioxygenase (C23O) of Pseudomonas putida, encoded by the xylE gene, was found to be sensitive to hydrogen peroxide (H2O2) when used as a reporter in gene fusion constructs. Exposure of Pseudomonas aeruginosa katA or katA katB mutants harboring katA- or katB-lacZ (encoding β-galactosidase) or -xylE fusion plasmids to H2O2 stimulated β-galactosidase activity, while there was little or no detectable C23O activity in these strains. More than 95% of C23O activity was lost after a 5-min exposure to equimolar H2O2, while a 10,000-fold excess was required for similar inhibition of β-galactosidase. Electron paramagnetic resonance spectra of the nitrosyl complexes of C23O showed that H2O2 nearly stoichiometrically oxidized the essential active-site ferrous ion, thus accounting for the loss of activity. Our results suggest using caution in interpreting data derived from xylE reporter fusions under aerobic conditions, especially where oxidative stress is present or when catalase-deficient strains are used.  相似文献   

14.
15.
The symbiotic interaction between Medicago sativa and Sinorhizobium meliloti RmkatB++ overexpressing the housekeeping catalase katB is delayed, and this delay is combined with an enlargement of infection threads. This result provides evidence that H2O2 is required for optimal progression of infection threads through the root hairs and plant cell layers.  相似文献   

16.
Among all polyphenols tested (tannic acid and flavonoids belonging to different subclasses) only tannin and quercetin significantly enhanced resistance of Escherichia coli to peroxide stress. Pretreatment of the cells with quercetin and tannin resulted in a decrease in the growth arrest duration under moderate H2O2 concentration (2 mM) and an increase in survival under high (10 mM) doses. The shorter growth recovery period in pretreated cells was connected with more rapid H2O2 elimination because of induced activity of scavenging enzymes. This effect was absent in the ΔoxyR mutant, which was unable to induce genes responding to peroxide stress. The data obtained suggest that the observed protection was a result of two overlapping effects: induction of OxyR regulon by low concentrations of H2O2, accumulated during extracellular autoxidation of quercetin and tannin, and protection of synthesis of OxyR-regulated antioxidant enzymes during H2O2 stress because of intracellular binding of iron by quercetin and tannin and suppressing Fenton chemistry.  相似文献   

17.
18.
The beneficial effects of melatonin on abiotic stress have been demonstrated in several plants. However, little is known about the signal transduction pathway of melatonin involved in the plant stress response. Here, we manipulated the melatonin levels in tomato plants through a chemical approach. The roles of melatonin in stress tolerance were studied by assessing the symptoms, chlorophyll fluorescence and stress‐responsive gene expression. Moreover, both chemical and genetic approaches were used to study the roles of hydrogen peroxide (H2O2) in melatonin‐induced signal transduction in tomato plants. We found that melatonin activates NADPH oxidase (RBOH) to enhance H2O2 levels by reducing its S‐nitrosylation activity. Furthermore, melatonin‐induced H2O2 accumulation was accompanied by obtainable stress tolerance. Inhibition of RBOH or chemical scavenging of H2O2 significantly reduced the melatonin‐induced defense response, including reduced expression of several stress‐related genes (CDPK1, MAPK1, TSPMS, ERF4, HSP80 and ERD15) and reduced antioxidative enzyme activity (SOD, CAT and APX), which were responsible for the stress tolerance. Collectively, these results revealed a novel mechanism in which RBOH activity and H2O2 signaling are important components of the melatonin‐induced stress tolerance in tomato plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号