首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc1 and cytochrome b6f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein in most organisms is a monotopic membrane protein, in actinobacteria, it is a polytopic protein with three transmembrane domains. In this work, we show that the Rieske protein of Streptomyces coelicolor requires both the Sec and the Tat pathways for its assembly. Genetic and biochemical approaches revealed that the initial two transmembrane domains were integrated into the membrane in a Sec-dependent manner, whereas integration of the third transmembrane domain, and thus the correct orientation of the iron-sulfur domain, required the activity of the Tat translocase. This work reveals an unprecedented co-operation between the mechanistically distinct Sec and Tat systems in the assembly of a single integral membrane protein.  相似文献   

2.
The twin-arginine translocation (Tat) pathway can transport folded and co-factor-containing cargo proteins over bacterial cytoplasmic membranes. Functional Tat machinery components, a folded state of the cargo protein and correct co-factor insertion in the cargo protein are generally considered as prerequisites for successful translocation. The present studies were aimed at a dissection of these requirements with regard to the Rieske iron-sulfur protein QcrA of Bacillus subtilis. Notably, QcrA is a component of the cytochrome bc1 complex, which is conserved from bacteria to man. Single amino acid substitutions were introduced into the Rieske domain of QcrA to prevent either co-factor binding or disulfide bond formation. Both types of mutations precluded QcrA translocation. Importantly, a proofreading hierarchy was uncovered, where a QcrA mutant defective in disulfide bonding was quickly degraded, whereas mutant QcrA proteins defective in co-factor binding accumulated in the cytoplasm and membrane. Altogether, these are the first studies on Tat-dependent protein translocation where both oxidative folding and co-factor attachment have been addressed in a single native molecule.  相似文献   

3.
Atovaquone is a substituted 2-hydroxy-naphthoquinone used therapeutically against Plasmodium falciparum (malaria) and Pneumocystis pathogens. It acts by inhibiting the cytochrome bc1 complex via interactions with the Rieske iron-sulfur protein and cytochrome b in the ubiquinol oxidation pocket. As the targeted pathogens have developed resistance to this drug there is an urgent need for new alternatives. To better understand the determinants of inhibitor binding in the ubiquinol oxidation pocket of the bc1 complex we synthesized a series of hydroxy-naphthoquinones bearing a methyl group on the benzene ring that is predicted to interact with the nuclear encoded Rieske iron-sulfur protein. We have also attempted to overcome the metabolic instability of a potent cytochrome bc1 complex inhibitor, a 2-hydroxy-naphthoquinone with a branched side chain, by fluorinating the terminal methyl group. We have tested these new 2-hydroxy-naphthoquinones against yeast and bovine cytochrome bc1 complexes to model the interaction with pathogen and human enzymes and determine parameters that affect efficacy of binding of these inhibitors. We identified a hydroxy-naphthoquinone with a trifluoromethyl function that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

4.
We have measured the rates of superoxide anion generation by cytochrome bc1 complexes isolated from bovine heart and yeast mitochondria and by cytochrome bc1 complexes from yeast mutants in which the midpoint potentials of the cytochrome b hemes and the Rieske iron-sulfur cluster were altered by mutations in those proteins. With all of the bc1 complexes the rate of superoxide anion production was greatest in the absence of bc1 inhibitor and ranged from 3% to 5% of the rate of cytochrome c reduction. Stigmatellin, an inhibitor that binds to the ubiquinol oxidation site in the bc1 complex, eliminated superoxide anion formation, while myxothiazol, another inhibitor of ubiquinol oxidation, allowed superoxide anion formation at a low rate. Antimycin, an inhibitor that binds to the ubiquinone reduction site in the bc1 complex, also allowed superoxide anion formation and at a slightly greater rate than myxothiazol. Changes in the midpoint potentials of the cytochrome b hemes had no significant effect on the rate of cytochrome c reduction and only a small effect on the rate of superoxide anion formation. A mutation in the Rieske iron-sulfur protein that lowers its midpoint potential from +285 to +220 mV caused the rate of superoxide anion to decline in parallel with a decline in cytochrome c reductase activity. These results indicate that superoxide anion is formed by similar mechanisms in mammalian and yeast bc1 complexes. The results also show that changes in the midpoint potentials of the redox components that accept electrons during ubiquinol oxidation have only small effects on the formation of superoxide anion, except to the extent that they affect the activity of the enzyme.  相似文献   

5.
Cytochrome bc 1 complexes have been isolated from wild type Rhodopseudomonas viridis and Rhodospirillum rubrum and purified by affinity chromatography on cytochrome c-Sepharose 4B. Both complexes are largely free of bacteriochlorophyll and carotenoids and contain cytochromes b and c 1 in a 2:1 molar ratio. For the Rps. viridis complex, evidence has been obtained for two spectrally distinct b-cytochromes. The R. rubrum complex contains a Rieske iron-sulfur protein (present in approximately 1:1 molar ratio to cytochrome c 1) and catalyzes an antimycin A- and myxothiazol-sensitive electron transfer from duroquinol to equine cytochrome c or R. rubrum cytochrome c 2. Although an attempt to prepare a cytochrome bc 1 complex from the gliding green bacterium Chloroflexus aurantiacus was not successful, membranes isolated from phototrophically grown Cfl. aurantiacus were shown to contain a Rieske iron-sulfur protein and protoheme (the prosthetic group of b-type cytochromes).Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

6.
Extracellular DNA (eDNA) is a major constituent of the extracellular matrix of Pseudomonas aeruginosa biofilms and its release is regulated via pseudomonas quinolone signal (PQS) dependent quorum sensing (QS). By screening a P. aeruginosa transposon library to identify factors required for DNA release, mutants with insertions in the twin-arginine translocation (Tat) pathway were identified as exhibiting reduced eDNA release, and defective biofilm architecture with enhanced susceptibility to tobramycin. P. aeruginosa tat mutants showed substantial reductions in pyocyanin, rhamnolipid and membrane vesicle (MV) production consistent with perturbation of PQS-dependent QS as demonstrated by changes in pqsA expression and 2-alkyl-4-quinolone (AQ) production. Provision of exogenous PQS to the tat mutants did not return pqsA, rhlA or phzA1 expression or pyocyanin production to wild type levels. However, transformation of the tat mutants with the AQ-independent pqs effector pqsE restored phzA1 expression and pyocyanin production. Since mutation or inhibition of Tat prevented PQS-driven auto-induction, we sought to identify the Tat substrate(s) responsible. A pqsA::lux fusion was introduced into each of 34 validated P. aeruginosa Tat substrate deletion mutants. Analysis of each mutant for reduced bioluminescence revealed that the primary signalling defect was associated with the Rieske iron-sulfur subunit of the cytochrome bc1 complex. In common with the parent strain, a Rieske mutant exhibited defective PQS signalling, AQ production, rhlA expression and eDNA release that could be restored by genetic complementation. This defect was also phenocopied by deletion of cytB or cytC1. Thus, either lack of the Rieske sub-unit or mutation of cytochrome bc1 genes results in the perturbation of PQS-dependent autoinduction resulting in eDNA deficient biofilms, reduced antibiotic tolerance and compromised virulence factor production.  相似文献   

7.
The cytochrome bc1 complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc1 complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc1 complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc1 complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc1 complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron–sulfur protein and its role in completing the assembly of functional bc1 complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

8.
《BBA》2022,1863(2):148508
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical ‘chromatophore’ vesicles. These bacterial ‘organelles’ are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.  相似文献   

9.
The cytochrome bc1 complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc1 complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc1 complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc1 complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc1 complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron–sulfur protein and its role in completing the assembly of functional bc1 complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

10.
There are now four structures of vertebrate mitochondrial bc 1 complexes available in theprotein databases and structures from yeast and bacterial sources are expected soon. Thisreview summarizes the new information with emphasis on the avian cytochrome bc 1 complex(PDB entries 1BCC and 3BCC). The Rieske iron–sulfur protein is mobile and this has beenproposed to be important for catalysis. The binding sites for quinone have been located basedon structures containing inhibitors and, in the case of the quinone reduction site Qi, thequinone itself.  相似文献   

11.
Armen Y. Mulkidjanian 《BBA》2005,1709(1):5-34
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a “hub” in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique “bifurcated” reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.  相似文献   

12.
Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites.  相似文献   

13.
The pet operon, encoding the prosthetic group-containing subunits of the cytochrome bc 1 complex of the purple sulfur bacterium Chromatium vinosum, has been cloned and sequenced. The 5 to 3 order of the C. vinosum genes is: petA, encoding the Rieske iron-sulfur protein; petB, encoding cytochrome b; and petC, encoding cytochrome c1. Cytochrome b is the best conserved subunit of the C. vinosum complex, when compared to the corresponding proteins from four photosynthetic purple non-sulfur bacteria (70 to 74% identity). Identities for the C. vinosum Rieske protein and those from purple non-sulfur bacteria range from 60 to 64%. The C-terminal region of the C. vinosum Rieske protein is quite similar to those of purple non-sulfur bacteria, while the N-terminal region is more closely related to mitochondrial Rieske proteins of organisms such as Neurospora crassa. Cytochrome c1 is the least well-conserved protein of the C. vinosum cytochrome bc1 complex, with identities ranging from 49 to 51% when compared to the corresponding proteins from purple non-sulfur bacteria. A well-conserved negatively-charged region of the cytochromes c1 of the purple non-sulfur bacteria, thought to be involved in binding the electron acceptor for the complex, cytochrome c2, is absent in C. vinosum cytochrome c1. A positive Southern hybridization using a probe constructed from the Rhodobacter sphaeroides fbcQ gene, which codes for a fourth subunit of the cytochrome bc1 complex in that bacterium, suggests the presence of a homologous gene in C. vinosum.  相似文献   

14.
In photosynthetic organisms, membrane pigment-protein complexes [light-harvesting complex 1 (LH1) and light-harvesting complex 2 (LH2)] harvest solar energy and convert sunlight into an electrical and redox potential gradient (reaction center) with high efficiency. Recent atomic force microscopy studies have described their organization in native membranes. However, the cytochrome (cyt) bc1 complex remains unseen, and the important question of how reduction energy can efficiently pass from core complexes (reaction center and LH1) to distant cyt bc1 via membrane-soluble quinones needs to be addressed. Here, we report atomic force microscopy images of entire chromatophores of Rhodospirillum photometricum. We found that core complexes influence their molecular environment within a critical radius of ∼ 250 Å. Due to the size mismatch with LH2, lipid membrane spaces favorable for quinone diffusion are found within this critical radius around cores. We show that core complexes form a network throughout entire chromatophores, providing potential quinone diffusion pathways that will considerably speed the redox energy transfer to distant cyt bc1. These long-range quinone pathway networks result from cooperative short-range interactions of cores with their immediate environment.  相似文献   

15.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc1 complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc1 complex are not well understood. Atovaquone®, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc1 complexes as surrogates to model the interaction of atovaquone with the bc1 complexes of the target pathogens and human host. As a first step to identify new cytochrome bc1 complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc1 complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc1 complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

16.
All photosynthetic membranes contain a cytochrome bc 1 or b 6 f complex that catalyzes the oxidation of quinols and the reduction of a high-potential electron carrier, such as cytochrome c 2 or plastocyanin. The cytochrome complex also functions in the translocation of protons across the membrane and as a consequence, establishes the proton motive force that is used for the synthesis of ATP. The structure and function of the cytochrome complexes are first reviewed in this chapter. Amino acid sequence information for almost all of the protein subunits of these complexes is now available, and these allow for a detailed consideration of functional domains in the protein subunits and for a further discussion of the evolution of the cytochrome complex in photosynthetic organisms.  相似文献   

17.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

18.
Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC–LH1–PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC–LH1–PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC–LH1–PufX arrays, but not with a fixed, stoichiometric cytbc1–RC–LH1–PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1–RC–PufX dimers & 2 RC–LH1–PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.  相似文献   

19.
The final step in the assembly of the ubiquinol-cytochrome c reductase or bc1 complex involves the insertion of the Rieske Fe/S cluster protein, Rip1. Maturation of Rip1 occurs within the mitochondrial matrix prior to its translocation across the inner membrane (IM) in a process mediated by the Bcs1 ATPase and subsequent insertion into the bc1 complex. Here we show that the matrix protein Mzm1 functions as a Rip1 chaperone, stabilizing Rip1 prior to the translocation step. In the absence of Mzm1, Rip1 is prone to either proteolytic degradation or temperature-induced aggregation. A series of Rip1 truncations were engineered to probe motifs necessary for Mzm1 interaction and Bcs1-mediated translocation of Rip1. The Mzm1 interaction with Rip1 persists in Rip1 variants lacking its transmembrane domain or containing only its C-terminal globular Fe/S domain. Replacement of the globular domain of Rip1 with that of the heterologous folded protein Grx3 abrogated Mzm1 interaction; however, appending the C-terminal 30 residues of Rip1 to the Rip1-Grx3 chimera restored Mzm1 interaction. The Rip1-Grx3 chimera and a Rip1 truncation containing only the N-terminal 92 residues each induced stabilization of the bc1:cytochrome oxidase supercomplex in a Bcs1-dependent manner. However, the Rip1 variants were not stably associated with the supercomplex. The induced supercomplex stabilization by the Rip1 N terminus was independent of Mzm1.  相似文献   

20.
Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号