首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plesiomonas shigelloides O17 LPS contains the same O-antigenic polysaccharide chain as a causative agent of dysentery, Shigella sonnei. This polysaccharide can be used as a component of a vaccine against dysentery. Core part of the P. shigelloides O17 LPS was studied using NMR and mass spectrometry and the following structure was proposed: Significant similarity of the P. shigelloides O17 LPS core with the structure of the P. shigelloides O54 core was observed.  相似文献   

2.
Lipopolysaccharide (LPS)-defective mutants of Pseudomonas solanacearum were used to test the hypothesis that differences in LPS structure are associated with the ability or inability of different strains to induce a hypersensitive response (HR) in tobacco. To obtain these mutants, LPS-specific bacteriophage of P. solanacearum were isolated and used to select phage-resistant mutants of the virulent, non-HR-inducing strain K60. The LPS of 24 of these mutants was purified and compared with that of K60 and its HR-inducing variant, B1. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, LPS from K60 and other smooth strains separated into many evenly spaced bands that migrated slowly, whereas LPS from B1 and most phage-resistant strains separated into one to three bands that migrated rapidly. Carbohydrate analysis showed that the LPS of the phage-resistant strains lacked O-antigen sugars (rhamnose, xylose, and N-acetylglucosamine) and could be grouped into (i) those that had all core sugars (rhamnose, glucose, heptose, and 2-keto-3-deoxyoctonate), (ii) those that had no core rhamnose, and (iii) those that lacked all core sugars except for 2-keto-3-deoxyoctonate. The LPS composition of 10 of the rough, phage-resistant mutants was similar to that of the HR-inducing strain, B1, yet none of them induced the HR. Only 2 of 13 mutant strains tested caused wilting of tobacco, and these had rough LPS but produced large amounts of extracellular polysaccharide, unlike most LPS-defective mutants. The evidence did not support the hypothesis that the initial interaction between rough LPS and tobacco cell walls is the determining factor in HR initiation.  相似文献   

3.
Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.  相似文献   

4.
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis.  相似文献   

5.
6.
In this study, we report the identification of genes required for the biosynthesis of the core lipopolysaccharides (LPSs) of two strains of Proteus mirabilis. Since P. mirabilis and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up to the second outer-core residue, the functions of the common P. mirabilis genes was elucidated by genetic complementation studies using well-defined mutants of K. pneumoniae. The functions of strain-specific outer-core genes were identified by using as surrogate acceptors LPSs from two well-defined K. pneumoniae core LPS mutants. This approach allowed the identification of two new heptosyltransferases (WamA and WamC), a galactosyltransferase (WamB), and an N-acetylglucosaminyltransferase (WamD). In both strains, most of these genes were found in the so-called waa gene cluster, although one common core biosynthetic gene (wabO) was found outside this cluster.Gram-negative motile and frequently swarming bacteria of the genus Proteus and the family Enterobacteriaceae are opportunistic human pathogens (33). Currently, the genus consists of five species (Proteus mirabilis, P. penneri, P. vulgaris, P. myxofaciens, and P. hauseri) and three genomospecies (4, 5, and 6) (33, 35). P. mirabilis is a common uropathogen that causes urinary tract infections especially in individuals with functional or anatomical abnormalities of the urinary tract (52) and elderly persons undergoing long-term catheterization (53) but less frequently in normal hosts (43). Potentially serious complications arising from P. mirabilis infections include bladder and kidney stone formation, catheter obstruction due to the formation of encrusting biofilms, and bacteremia (reviewed in reference 2). This bacterium is found more frequently than Escherichia coli in kidney infections (14) and may be associated with rheumatoid arthritis (38). Studies aimed at the identification of P. mirabilis virulence factors showed that flagella and fimbriae (MR/P and PMF) are required for entry into and colonization of the bladder, respectively (reviewed in reference 12). Other important virulence factors are urease, hemolysin, and iron acquisition (12). More recently, an extracellular metalloprotease (37) and several putative DNA binding regulatory, cell-envelope related, and plasmid-encoded proteins have been identified by signature-tagged mutagenesis (8, 21).The lipopolysaccharide (LPS), as in other members of the family Enterobacteriaceae, consists of three domains, an endotoxic glycolipid (lipid A), an O-polysaccharide (O-PS) chain or O-antigen, and an intervening core oligosaccharide (OS) region. The O-antigen is the major surface antigen, and its serological O specificity, in contrast to that of other Gram-negative bacteria (31), is defined by the structure of the O-PS chain and that of the core OS (51). On the basis of immunospecificity, 60 O serogroups (28, 36) have been recognized in P. mirabilis and P. vulgaris, and several new Proteus O serogroups have been proposed for P. penneri (27, 55). The LPS is a potential Proteus virulence factor (42), and recently two mutants deficient in a glycosyltransferase and with attenuated virulence have been isolated and it has been speculated that this glycosyltransferase could be involved in LPS biosynthesis (21). LPS plays a significant role in the resistance of P. mirabilis to antimicrobial peptides (32), and LPS charge alterations may influence the swarming motility of the bacterium (3, 32). In addition, the core LPS is a charged OS which plays an important role in the biological activities of the LPS and the function of the bacterial outer membrane (10). In Proteus, the core OS structures of up to 34 strains of different O serogroups have been determined (51). These structures revealed that Proteus core OSs share a heptasaccharide fragment that includes a 3-deoxy-α-d-manno-oct-2-ulosonic acid (Kdo) disaccharide, an l-glycero-α-d-manno-heptose (l,d-Hep) trisaccharide, and one residue each of d-glucose (d-Glc), d-galacturonic acid (d-GalA), and either d-glucosamine (d-GlcN) or d-galactosamine (d-GalN) (51). This common fragment is also found in the core LPSs of Klebsiella pneumoniae and Serratia marcescens (11, 41, 50). The rest of the Proteus core OS is quite variable, and it is possible to recognize up to 37 and 11 different structures in the genus and P. mirabilis, respectively (51). Some P. mirabilis core OS structures are characterized by the presence of unusual residues, such as, for instance, quinovosamine; an open-chain form of N-acetylgalactosamine (GalNAc); or unusual amino acids (51). In contrast, little is known about the genes encoding enzymes involved in core LPS biosynthesis in P. mirabilis, which makes detailed genetic analysis of the role of LPS in P. mirabilis pathogenesis difficult. Thus, we decided to identify these genes by using P. mirabilis strains R110 and 51/57, the whole structures of whose core LPSs are known (Fig. (Fig.11).Open in a separate windowFIG. 1.Chemical structures of the core LPSs of P. mirabilis strains R110 and 51/57 (51), K. pneumoniae types 1 (50) and 2 (41), and S. marcescens N28b (11).  相似文献   

7.
The distributed-genome hypothesis (DGH) states that pathogenic bacteria possess a supragenome that is much larger than the genome of any single bacterium and that these pathogens utilize genetic recombination and a large, noncore set of genes as a means of diversity generation. We sequenced the genomes of eight nasopharyngeal strains of Streptococcus pneumoniae isolated from pediatric patients with upper respiratory symptoms and performed quantitative genomic analyses among these and nine publicly available pneumococcal strains. Coding sequences from all strains were grouped into 3,170 orthologous gene clusters, of which 1,454 (46%) were conserved among all 17 strains. The majority of the gene clusters, 1,716 (54%), were not found in all strains. Genic differences per strain pair ranged from 35 to 629 orthologous clusters, with each strain's genome containing between 21 and 32% noncore genes. The distribution of the orthologous clusters per genome for the 17 strains was entered into the finite-supragenome model, which predicted that (i) the S. pneumoniae supragenome contains more than 5,000 orthologous clusters and (ii) 99% of the orthologous clusters (~3,000) that are represented in the S. pneumoniae population at frequencies of ≥0.1 can be identified if 33 representative genomes are sequenced. These extensive genic diversity data support the DGH and provide a basis for understanding the great differences in clinical phenotype associated with various pneumococcal strains. When these findings are taken together with previous studies that demonstrated the presence of a supragenome for Streptococcus agalactiae and Haemophilus influenzae, it appears that the possession of a distributed genome is a common host interaction strategy.  相似文献   

8.
Bacteriocin production was tested in 36Klebsiella and 3Enterobacter aerogenes strains. Bacteriocins produced byK. pneumoniae were found to be active on most strains ofK. edwardsi, K. aerogenes, K. rhinoscleromatis andE. aerogenes. The bacteriocin produced byE. aerogenes 37 is also active onK. pneumoniae andK. ozaenae. The bacteriocins produced byK. rhinoscleromatis, K. edwardsi andK. aerogenes are active on only a few strains. The activity spectra of the bacteriocins of a number of strains were similar. The method of classification used for colicins could not be applied to these bacteriocins as mutants resistant to one bacteriocin were nearly always resistant to all other bacteriocins. One mutant, though resistant, still adsorbed the bacteriocin to which it was resistant and it is very likely that the same applies for all other resistant mutants. The hypothesis is made that allKlebsiella bacteriocins have the same biochemical target, or more likely, possess a common transmission mechanism.  相似文献   

9.
Mucoviscosity-associated gene A (magA) of Klebsiella pneumoniae contributes to K1 capsular polysaccharide (CPS) biosynthesis. Based on sequence homology and gene alignment, the magA gene has been predicted to encode a Wzy-type CPS polymerase. Sequence alignment with the Wzy_C and RfaL protein families (which catalyze CPS or lipopolysaccharide (LPS) biosynthesis) and topological analysis has suggested that eight highly conserved residues, including G308, G310, G334, G337, R290, P305, H323, and N324, were located in a hypothetical loop region. Therefore, we used site-directed mutagenesis to study the role of these residues in CPS production, and to observe the consequent phenotypes such as mucoviscosity, serum and phagocytosis resistance, and virulence (as assessed in mice) in pyogenic liver abscess strain NTUH-K2044. Alanine substitutions at R290 or H323 abolished all of these properties. The G308A mutant was severely impaired for these functions. The G334A mutant remained mucoid with decreased CPS production, but its virulence was significantly reduced in vivo. No phenotypic change was observed for strains harboring magA G310A, G337A, P305A, or N324A mutations. Therefore, R290, G308, H323, and G334 are functionally important residues of the MagA (Wzy) protein of K. pneumoniae NTUH-K2044, capsular type K1. These amino acids are also likely to be important for the function of Wzy in other capsular types in K. pneumoniae and other species bearing Wzy_C family proteins.  相似文献   

10.
11.
Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines.  相似文献   

12.
Four kinds of polychlorinated biphenyl (PCB)-degrading Rhodococcus sp. (TA421, TA431, HA99, and K37) have been isolated from termite ecosystem and under alkaline condition. The bph gene cluster involved in the degradation of PCB/biphenyl has been analyzed in strain TA421. This gene cluster was highly homologous to bph gene clusters in R. globerulus P6 and Rhodococcus sp. RHA1. In this study, we cloned and analyzed the bph gene cluster essential to PCB/biphenyl degradation from R. rhodochrous K37. The order of the genes and the sequence were different in K37 than in P6, RHA1, and TA421. The bphC8 K37 gene was more homologous to the meta-cleavage enzyme involved in phenanthrene metabolism than bphC genes involved in biphenyl metabolism. Two other Rhodococcus strains (HA99 and TA431) had PCB/biphenyl degradation gene clusters similar to that in K37. These findings suggest that these bph gene clusters evolved separately from the well-known bph gene clusters of PCB/biphenyl degraders.  相似文献   

13.
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.  相似文献   

14.
In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.  相似文献   

15.
Recent isolation of Pseudomonas aeruginosa strains from the open ocean and subsequent pulsed-field gel electrophoresis analyses indicate that these strains have a unique genotype (N. H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino, M. Nishimura, and K. Kogure, Microb. Ecol. 53:173-186, 2007). We hypothesized that ocean P. aeruginosa strains have a unique phylogenetic position relative to other strains. The objective of this study was to clarify the intraspecies phylogenetic relationship between marine strains and other strains from various geographical locations. Considering the advantages of using databases, multilocus sequence typing (MLST) was chosen for the typing and discrimination of ocean P. aeruginosa strains. Seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were analyzed, and the results were compared with data on the MLST website. These genes were also used for phylogenetic analysis of P. aeruginosa. Rooted and unrooted phylogenetic trees were generated for each gene locus and the concatenated gene fragments. MLST data showed that all the ocean strains were new. Trees constructed for individual and concatenated genes revealed that ocean P. aeruginosa strains have clusters distinct from those of other P. aeruginosa strains. These clusters roughly reflected the geographical locations of the isolates. These data support our previous findings that P. aeruginosa strains are present in the ocean. It can be concluded that the ocean P. aeruginosa strains have diverged from other isolates and form a distinct cluster based on MLST and phylogenetic analyses of seven housekeeping genes.  相似文献   

16.

Enterobacteriaceae members are largely distributed in the environment and responsible for a wide range of bacterial infections in hospitalized patients. Pseudomonas aeruginosa (P. aeruginosa) causes severe nosocomial infections associated with severe inflammation due to its potent virulent factors including lipopolysaccharide (LPS). The aim of this study is to assess the bacterial LPS effect on Enterobacteriaceae biofilm and other virulence factors in vitro. The effect of P. aeruginosa LPS on biofilm formation of two other species of Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) was assessed using a standard biofilm assay. PCR was performed on genes of biofilm and virulence factors. Expression of biofilm, type-1-fimbriae and serum resistance genes in treated and untreated cells was measured with RT-PCR. P. aeruginosa LPS has the ability to stimulate biofilm formation and stabilize the already formed biofilm significantly in all tested strains. In addition, LPS significantly increased the level of expression of Bss, FimH, and Iss genes when measured by RT-PCR. P. aeruginosa LPS has a direct stimulatory effect on the biofilm formation, type-1-fimbriae, and serum resistance in both E. coli and K. pneumoniae. So, the presence of P. aeruginosa in mixed infection with Enterobactereacea leads to increase their virulence.

  相似文献   

17.
The streptomycin counter-selection system is a useful tool for constructing unmarked in-frame gene deletions, which is a fundamental approach to study bacteria and their pathogenicity at the molecular level. A prerequisite for this system is acquiring a streptomycin-resistant strain due to rpsL mutations, which encodes the ribosomal protein S12. However, in this study no streptomycin resistance was found to be caused by rpsL mutations in all 127 clinical strains of Klebsiella pneumoniae isolated from liver abscess patients. By screening 107 spontaneous mutants of streptomycin resistance from a clinical strain of K. pneumoniae, nucleotide substitution or insertion located within the rpsL was detected in each of these strains. Thirteen different mutants with varied S12 proteins were obtained, including nine streptomycin-dependent mutants. The virulence of all four streptomycin-resistant mutants was further evaluated. Compared with the parental strain, the K42N, K42T and K87R mutants showed a reduction in growth rate, and the K42N and K42T mutants became susceptible to normal human serum. In the mice LD50 (the bacterial dose that caused 50% death) assay, the K42N and K42T mutants were ∼1,000-fold less lethal (∼2×105 CFU) and the K87R mutant was ∼50-fold less lethal (∼1×104 CFU) than the parental strain (∼2×102 CFU). A K42R mutant showed non-observable effects on the above assays, while this mutant exhibited a small cost (P<0.01) in an in vitro growth competition experiment. In summary, most of the K. pneumoniae strains with streptomycin resistance caused by rpsL mutations are less virulent than their parental strain in the absence of streptomycin. The K42R mutant showed similar pathogenicity to its parental strain and should be one of the best choices when using rpsL as a counter-selection marker.  相似文献   

18.
Plesiomonas shigelloides is a Gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal infections, which especially invades immunocompromised patients and neonates. The lipopolysaccharides are one of the major virulence determinants in Gram-negative bacteria and are structurally composed of three different domains: the lipid A, the core oligosaccharide and the O-antigen polysaccharide.In the last few years we elucidated the structures of the O-chain and the core oligosaccharide from the P. shigelloides strain 302-73. In this paper we now report the characterization of the linkage between the core and the O-chain. The LPS obtained after PCP extraction contained a small number of O-chain repeating units. The product obtained by hydrazinolysis was analysed by FTICR-ESIMS and suggested the presence of an additional Kdo in the core oligosaccharide. Furthermore, the LPS was hydrolysed under mild acid conditions and a fraction that contained one O-chain repeating unit linked to a Kdo residue was isolated and characterized by FTICR-ESIMS and NMR spectroscopy. Moreover, after an alkaline reductive hydrolysis, a disaccharide α-Kdo-(2→6)-GlcNol was isolated and characterized. The data obtained proved the presence of an α-Kdo in the outer core and allowed the identification of the O-antigen biological repeating unit as well as its linkage with the core oligosaccharide.  相似文献   

19.
Klebsiella species are the most extensively studied among a number of 2,3-butanediol (2,3-BDO)-producing microorganisms. The ability to metabolize a wide variety of substrates together with the ease of cultivation made this microorganisms particularly promising for the application in industrial-scale production of 2,3-BDO. However, the pathogenic characteristics of encapsulated Klebsiella species are considered to be an obstacle hindering their industrial applications. Here, we removed the virulence factors from three 2,3-BDO-producing strains, Klebsiella pneumoniae KCTC 2242, Klebsiella oxytoca KCTC1686, and K. oxytoca ATCC 43863 through site-specific recombination technique. We generated deletion mutation in wabG gene encoding glucosyltransferase which plays a key role in the synthesis of outer core lipopolysaccharides (LPS) by attaching the first outer core residue d-GalAp to the O-3 position of the l,d-HeppII residue. The morphologies and adhesion properties against epithelial cells were investigated, and the results indicated that the wabG mutant strains were devoid of the outer core LPS and lost the ability to retain capsular structure. The time profile of growth and 2,3-BDO production from K. pneumoniae KCTC 2242 and K. pneumoniae KCTC 2242 ΔwabG were analyzed in batch culture with initial glucose concentration of 70 g/l. The growth was not affected by disrupting wabG gene, but the production of 2,3-BDO decreased from 31.27 to 22.44 g/l in mutant compared with that of parental strain. However, the productions of acetoin and lactate from wabG mutant strain were negligible, whereas that from parental strain reached to ~5 g/l.  相似文献   

20.
Streptococcus mitis is the closest relative of the major human pathogen S. pneumoniae. The 2,15 Mb sequence of the Streptococcus mitis B6 chromosome, an unusually high-level beta-lactam resistant and multiple antibiotic resistant strain, has now been determined to encode 2100 genes. The accessory genome is estimated to represent over 40%, including 75 mostly novel transposases and IS, the prophage φB6 and another seven phage related regions. Tetracycline resistance mediated by Tn5801, and an unusual and large gene cluster containing three aminoglycoside resistance determinants have not been described in other Streptococcus spp. Comparative genomic analyses including hybridization experiments on a S. mitis B6 specific microarray reveal that individual S. mitis strains are almost as distantly related to the B6 strain as S. pneumoniae. Both species share a core of over 900 genes. Most proteins described as pneumococcal virulence factors are present in S. mitis B6, but the three choline binding proteins PcpA, PspA and PspC, and three gene clusters containing the hyaluronidase gene, ply and lytA, and the capsular genes are absent in S. mitis B6 and other S. mitis as well and confirm their importance for the pathogenetic potential of S. pneumoniae. Despite the close relatedness between the two species, the S. mitis B6 genome reveals a striking X-alignment when compared with S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号