首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatitis C virus NS5A protein is essential for RNA replication and virion assembly. NS5A is phosphorylated on multiple residues during infections, but these sites remain uncharacterized. Here we identify serine 222 of genotype 2a NS5A as a phosphorylation site that functions as a negative regulator of RNA replication. This site is a component of the hyperphosphorylated form of NS5A, which is in good agreement with previous observations that hyperphosphorylation negatively affects replication.  相似文献   

2.
Nonstructural protein 5A of the hepatitis C virus (HCV) is a highly phosphorylated molecule implicated in multiple interactions with the host cell and most likely involved in RNA replication. Two phosphorylated variants of NS5A have been described, designated according to their apparent molecular masses (in kilodaltons) as p56 and p58, which correspond to the basal and hyperphosphorylated forms, respectively. With the aim of identifying a possible role of NS5A phosphorylation for RNA replication, we performed an extensive mutation analysis of three serine clusters that are involved in phosphorylation and hyperphosphorylation of NS5A. In most cases, alanine substitutions for serine residues in the central cluster 1 that enhanced RNA replication to the highest levels led to a reduction of NS5A hyperphosphorylation. Likewise, several highly adaptive mutations in NS4B, which is also part of the replication complex, resulted in a reduction of NS5A hyperphosphorylation too, arguing that alterations of the NS5A phosphorylation pattern play an important role for RNA replication. On the other hand, a deletion encompassing all highly conserved serine residues in the C-terminal region of NS5A that are involved in basal phosphorylation did not significantly affect RNA replication but reduced formation of p56. This region was found to tolerate even large insertions with only a moderate effect on replication. Based on these results, we propose a model of the role of NS5A phosphorylation in the viral life cycle.  相似文献   

3.
Hepatitis C virus (HCV) has been the subject of intensive studies for nearly two decades. Nevertheless, some aspects of the virus life cycle are still a mystery. The HCV nonstructural protein 5A (NS5A) has been shown to be a modulator of cellular processes possibly required for the establishment of viral persistence. NS5A is heavily phosphorylated, and a switch between a basally phosphorylated form of NS5A (p56) and a hyperphosphorylated form of NS5A (p58) seems to play a pivotal role in regulating HCV replication. Using kinase inhibitors that specifically inhibit the formation of NS5A-p58 in cells, we identified the CKI kinase family as a target. NS5A-p58 increased upon overexpression of CKI-alpha, CKI-delta, and CKI-epsilon, whereas the RNA interference of only CKI-alpha reduced NS5A hyperphosphorylation. Rescue of inhibition of NS5A-p58 was achieved by CKI-alpha overexpression, and we demonstrated that the CKI-alpha isoform is targeted by NS5A hyperphosphorylation inhibitors in living cells. Finally, we showed that down-regulation of CKI-alpha attenuates HCV RNA replication.  相似文献   

4.
Two proteins, a 56-kDa protein (p56) and a 58-kDa protein (p58), are produced from the hepatitis C virus (HCV) nonstructural region 5A (NS5A). Recently, we found that both proteins are phosphorylated at serine residues and that p58 is a hyperphosphorylated form of p56. Furthermore, hyper-phosphorylation depends on the production of an intact form of the HCV NS4A protein. To clarify the nature of NS5A phosphorylation, pulse-chase analysis was performed with a transient protein production system in cultured cells. The study indicated that basal and hyperphosphorylation of NS5A occurred after proteolytic production of NS5A was complete. In an attempt to identify the location of the hyperphosphorylation sites in p58, proteins with sequential deletions from the C-terminal region of NS5A and with mutations of possible phosphorylated serine residues to a neutral amino acid, alanine, were constructed. The deleted or mutated proteins were then tested for hyperphosphorylation in the presence of the NS4A product. Here, we report that serine residues 2197, 2201, and/or 2204 are important for hyper-phosphorylation. Important sites for basal phosphorylation were identified in the region from residues 2200 to 2250 and in the C-terminal region of the NS5A product. A subcellular localization study showed that most of the NS5A products were localized in the nuclear periplasmic membrane fraction.  相似文献   

5.
Fridell RA  Qiu D  Valera L  Wang C  Rose RE  Gao M 《Journal of virology》2011,85(14):7312-7320
BMS-790052, targeting nonstructural protein 5A (NS5A), is the most potent hepatitis C virus (HCV) inhibitor described to date. It is highly effective against genotype 1 replicons and also displays robust genotype 1 anti-HCV activity in the clinic (M. Gao et al., Nature 465:96-100, 2010). BMS-790052 inhibits genotype 2a JFH1 replicon cells and cell culture infectious virus with 50% effective concentrations (EC(50)s) of 46.8 and 16.1 pM, respectively. Resistance selection studies with the JFH1 replicon and virus systems identified drug-induced mutations within the N-terminal region of NS5A. F28S, L31M, C92R, and Y93H were the major resistance mutations identified; the impact of these mutations on inhibitor sensitivity between the replicon and virus was very similar. The C92R and Y93H mutations negatively impacted fitness of the JFH1 virus. Second-site replacements at NS5A residue 30 (K30E/Q) restored efficient replication of the C92R viral variant, thus demonstrating a genetic interaction between NS5A residues 30 and 92. By using a trans-complementation assay with JFH1 replicons encoding inhibitor-sensitive and inhibitor-resistant NS5A proteins, we provide genetic evidence that NS5A performs the following two distinct functions in HCV RNA replication: a cis-acting function that likely occurs as part of the HCV replication complex and a trans-acting function that may occur outside the replication complex. The cis-acting function is likely performed by basally phosphorylated NS5A, while the trans-acting function likely requires hyperphosphorylation. Our data indicate that BMS-790052 blocks the cis-acting function of NS5A. Since BMS-790052 also impairs JFH1 NS5A hyperphosphorylation, it likely also blocks the trans-acting function.  相似文献   

6.
7.
The hepatitis C virus encodes a single polyprotein that is processed by host and viral proteases to yield at least 10 mature viral proteins. The nonstructural (NS) protein 5A is a phosphoprotein, and experimental data indicate that the phosphorylation state of NS5A is important for the outcome of viral RNA replication. We were able to identify kinase inhibitors that specifically inhibit the formation of the hyperphosphorylated form of NS5A (p58) in cells. These kinase inhibitors were used for inhibitor affinity chromatography in order to identify the cellular targets of these compounds. The kinases casein kinase I (CKI), p38 MAPK, CIT (Citron Rho-interacting kinase), GAK, JNK2, PKA, RSK1/2, and RIPK2 were identified in the high affinity binding fractions of two NS5A hyperphosphorylation inhibitors (NS5A-p58-i). Even though these kinases are targets of the NS5A-p58-i, the only kinase showing an effect on NS5A hyperphosphorylation was confirmed to be CKI-alpha. Although this finding does not exclude the possibility that other kinase(s) might be involved in basal or regulatory phosphorylation of NS5A, we show here that NS5A is a direct substrate of CKI-alpha. Moreover, in vitro phosphorylation of NS5A by CKI-alpha resulted for the first time in the production of basal and hyperphosphorylated forms resembling those produced in cells. In vitro kinase reactions performed with NS5A peptides show that Ser-2204 is a preferred substrate residue for CKI-alpha after pre-phosphorylation of Ser-2201.  相似文献   

8.
Minute virus of mice NS1 protein is a multifunctional phosphoprotein endowed with a variety of enzymatic and regulatory activities necessary for progeny virus particle production. To regulate all of its different functions in the course of a viral infection, NS1 has been proposed to be modulated by posttranslational modifications, in particular, phosphorylation. Indeed, it was shown that the NS1 phosphorylation pattern is altered during the infectious cycle and that the biochemical profile of the protein is dependent on the phosphorylation state of the polypeptide. Moreover, in vitro approaches have identified members of the protein kinase C (PKC) family, in particular, atypical PKC, as regulators of viral DNA replication through the phosphorylation of NS1 residues T435 and S473, thereby activating the protein for DNA unwinding activities. In order to substantiate these findings in vivo, we produced NS1 in the presence of a dominant-negative PKClambda mutant and characterized the purified protein in vitro. The NS1 protein produced under these conditions was found to be only partially phosphorylated and as a consequence to be deficient for viral DNA replication. However, it could be rescued for this viral function by treatment with recombinant activated PKClambda. Our data clearly demonstrate that NS1 is a target for PKClambda phosphorylation in vivo and that this modification is essential for the helicase activity of the viral polypeptide. In addition, the phosphorylation of NS1 at residues T435 and S473 appeared to occur mainly in the nucleus, providing further evidence for the involvement of PKClambda which, unlike PKCzeta, accumulates in the nuclear compartment of infected cells.  相似文献   

9.
In bluetongue virus (BTV)-infected cells, large cytoplasmic aggregates are formed, termed viral inclusion bodies (VIBs), which are believed to be the sites of viral replication and morphogenesis. The BTV nonstructural protein NS2 is the major component of VIBs. NS2 undergoes intracellular phosphorylation and possesses a strong single-stranded RNA binding activity. By changing phosphorylated amino acids to alanines and aspartates, we have mapped the phosphorylated sites of NS2 to two serine residues at positions 249 and 259. Since both of these serines are within the context of protein kinase CK2 recognition signals, we have further examined if CK2 is involved in NS2 phosphorylation by both intracellular colocalization and an in vitro phosphorylation assay. In addition, we have utilized the NS2 mutants to determine the role of phosphorylation on NS2 activities. The data obtained demonstrate that NS2 phosphorylation is not necessary either for its RNA binding properties or for its ability to interact with the viral polymerase VP1. However, phosphorylated NS2 exhibited VIB formation while unmodified NS2 failed to assemble as VIBs although smaller oligomeric forms of NS2 were readily formed. Our data reveal that NS2 phosphorylation controls VIBs formation consistent with a model in which NS2 provides the matrix for viral assembly.  相似文献   

10.
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.  相似文献   

11.
TY Hsiang  L Zhou  RM Krug 《Journal of virology》2012,86(19):10370-10376
We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.  相似文献   

12.
13.
TT virus (TTV) is a newly discovered human virus with a single-stranded, circular DNA genome. The TTV DNA sequence includes two major open reading frames (ORFs), ORF1 and ORF2. Recently, spliced TTV mRNAs were detected and revealed two additional coding regions, ORF3 and ORF4. We found sequence similarity between the TTV ORF3 protein and hepatitis C virus (HCV) nonstructural 5A (NS5A) protein, which is a phosphoprotein and is thought to associate with various cellular proteins. To test whether the TTV ORF3 protein is phosphorylated, the state of phosphorylation was analyzed with a transient protein production system. The TTV ORF3 protein was phosphorylated at the serine residues in its C-terminal portion. Furthermore, the TTV ORF3 gene generated two forms of proteins with a different phosphorylation state, similar to the HCV NS5A region, suggesting that TTV ORF3 protein has function(s) similar to phosphorylated viral proteins such as the HCV NS5A protein.  相似文献   

14.
Serine/threonine phosphorylation of the nonstructural protein 5 (NS5) is a conserved feature of flaviviruses, but the kinase(s) responsible and function(s) remain unknown. Mass spectrometry was used to compare the phosphorylation sites of the NS5 proteins of yellow fever virus (YFV) and dengue virus (DENV), two flaviviruses transmitted by mosquitoes. Seven DENV phosphopeptides were identified, but only one conserved phosphoacceptor site (threonine 449 in DENV) was identified in both viruses. This site is predicted to be a protein kinase G (PKG) recognition site and is a strictly conserved serine/threonine phosphoacceptor site in mosquito-borne flaviviruses. In contrast, in tick-borne flaviviruses, this residue is typically a histidine. A DENV replicon engineered to have the tick-specific histidine residue at this position is replication defective. We show that DENV NS5 purified from Escherichia coli is a substrate for PKG in vitro and facilitates the autophosphorylation of PKG as seen with cellular substrates. Phosphorylation in vitro by PKG also occurs at threonine 449. Activators and inhibitors of PKG modulate DENV replication in cell culture but not replication of the tick-borne langat virus. Collectively, these data argue that PKG mediates a conserved serine/threonine phosphorylation event specifically for flaviviruses spread by mosquitoes.The flavivirus genus contains many medically important species, including dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV). More than 2 billion people are at risk of infection by DENV alone, leading to an estimated 50 million cases annually, which may increase further as the range of the mosquito vector expands with urbanization (24). While disease from mosquito-borne flaviviruses is particularly common, there are other flaviviral human pathogens that exist with transmission cycles that do not involve mosquitoes. Tick-borne transmission is the other well-described route, but non-arthropod-borne routes also exist (for example, bats). It is likely that each transmission route has genetic adaptations that facilitate that route, but such changes are not yet understood (7).Serine/threonine phosphorylation is a conserved feature across all three genera of the family Flaviviridae, including the genus flavivirus (the others genera being pestivirus and hepacivirus). Among the features of Flaviviridae, the most-studied examples are the multiple phosphorylations of nonstructural protein 5A (NS5A) of hepatitis C virus, which exists in both basal (termed p56) and hyperphosphorylated (termed p58) states mediated by multiple kinases that both are necessary for and limit replication (14, 18, 23). Phosphorylation of NS5B, the RNA-dependent RNA polymerase (RdRP), has also been shown to affect replicon activity (10). In the genus flavivirus, several mosquito-borne viruses (DENV, WNV, and YFV) and at least one tick-borne encephalitis virus are known to have phosphorylated forms of nonstructural protein NS5 (2, 9, 11, 13, 19). In the genus flavivirus, NS5 is central to viral replication, as it possesses both RdRP and methyltransferase activities. DENV phosphorylation of NS5 correlates with the loss of NS5 interactions with the viral helicase NS3. A hyperphosphorylated form of NS5 was found to localize to the nucleus, away from the cytoplasmic sites of viral replication (6, 9). A nuclear localization sequence is present in DENV NS5 and is phosphorylated in vitro by host CKII, but the relationship between phosphorylation and nuclear localization has yet to be fully elucidated (17). Multiple different serine/threonine phosphorylation events likely occur in the flaviviral life cycle, potentially affecting various functions of NS5 (2), but the role of these events and identity of the kinase(s) responsible are largely unknown.In this report, we used mass spectrometry to identify serine/threonine phosphorylation sites in DENV. A single phosphoacceptor site, previously identified in YFV, is conserved specifically in the mosquito-borne flaviviruses but not the tick-borne flaviviruses. Furthermore, in vitro studies reveal that this site is phosphorylated by a cyclic-nucleotide-dependent kinase, protein kinase G (PKG), and a phosphoacceptor threonine/serine is required for replication. Taken together, these data implicate the PKG pathway in flaviviral replication for the first time and suggest a host cell pathway that could be targeted by antiviral therapy.  相似文献   

15.
Replication protein A (RPA) is the predominant eukaryotic single-stranded DNA binding protein composed of 70, 34, and 14 kDa subunits. RPA plays central roles in the processes of DNA replication, repair, and recombination, and the p34 subunit of RPA is phosphorylated in a cell-cycle-dependent fashion and is hyperphosphorylated in response to DNA damage. We have developed an in vitro procedure for the preparation of hyperphosphorylated RPA and characterized a series of novel sites of phosphorylation using a combination of in gel tryptic digestion, SDS-PAGE and HPLC, MALDI-TOF MS analysis, 2D gel electrophoresis, and phosphospecific antibodies. We have mapped five phosphorylation sites on the RPA p34 subunit and five sites of phosphorylation on the RPA p70 subunit. No modification of the 14 kDa subunit was observed. Using the procedures developed with in vitro phosphorylated RPA, we confirmed a series of phosphorylation events on RPA from HeLa cells that was hyperphosphorylated in vivo in response to the DNA damaging agents, aphidicolin and hydroxyurea.  相似文献   

16.
The hepatitis C virus (HCV) NS5A protein is phosphorylated by a cellular, serine/threonine kinase. To identify the major site(s) of NS5A phosphorylation, radiolabeled HCV-H NS5A phosphopeptides were purified and subjected to phosphoamino acid analysis and Edman degradation. These data identified the major intracellular phosphorylation site in the HCV-H NS5A protein as Ser(2321), a result verified by two additional, independent methods: (i) substitution of Ala for Ser(2321) and the concomitant disappearance of the major in vivo phosphorylated peptides and corresponding in vitro phosphorylated peptides; and (ii) comigration of the digestion products of a synthetic peptide phosphorylated on Ser(2321) with the major in vivo phosphorylated NS5A peptides. Site-directed mutagenesis of Ser(2321) suggested that phosphorylation of NS5A is dispensable for previously described interactions with NS4A and PKR, a cellular, antiviral kinase that does not appear to catalyze NS5A phosphorylation. The proline-rich nature of the amino acid sequence flanking Ser(2321) (PLPPPRS(2321) PPVPPPR) suggests that a proline-directed kinase is responsible for the majority of HCV NS5A phosphorylation, consistent with previous kinase inhibitor studies.  相似文献   

17.
18.
Hepatitis C virus non-structural protein 5A (NS5A) is a pleiotropic protein with key roles in viral RNA replication, modulation of cellular-signaling pathways and interferon (IFN) responses. To search for possible host factors involved in mediating these functions of NS5A, we adopted an affinity purification approach coupled with mass spectrometry to examine protein-protein interactions, and found that human amphiphysin II (also referred to as Bin1) specifically interacts with NS5A in mammalian cells. Pull-down assays showed that the Src homology 3 (SH3) domain of amphiphysin II is required for NS5A interaction and that c-Src also interacts with NS5A in cells. IFN-alpha treatment reduced the interaction of NS5A with c-Src, but not amphiphysin II, suggesting that the latter is independent of the IFN-signaling pathway. NS5A is a phosphoprotein and its phosphorylation status is considered to have an effect on viral RNA replication. In vitro kinase assays demonstrated that its interaction with amphiphysin II inhibits phosphorylation of NS5A. These results suggest that amphiphysin II participates in the HCV life cycle by modulating the phosphorylation of NS5A.  相似文献   

19.
20.
Initiation, a major rate-limiting step of host protein translation, is a critical target in many viral infections. Chronic hepatitis C virus (HCV) infection results in hepatocellular carcinoma. Translation initiation, up-regulated in many cancers, plays a critical role in tumorigenesis. mTOR is a major regulator of host protein translation. Even though activation of PI3K-AKT-mTOR by HCV non-structural protein 5A (NS5A) is known, not much is understood about the regulation of host translation initiation by this virus. Here for the first time we show that HCV up-regulates host cap-dependent translation machinery in Huh7.5 cells through simultaneous activation of mTORC1 and eukaryotic translation initiation factor 4E (eIF4E) by NS5A. NS5A, interestingly, overexpressed and subsequently hyperphosphorylated 4EBP1. NS5A phosphorylated eIF4E through the p38 MAPK-MNK pathway. Both HCV infection and NS5A expression augmented eIF4F complex assembly, an indicator of cap-dependent translation efficiency. Global translation, however, was not altered by HCV NS5A. 4EBP1 phosphorylation, but not that of S6K1, was uniquely resistant to rapamycin in NS5A-Huh7.5 cells, indicative of an alternate phosphorylation mechanism of 4EBP1. Resistance of Ser-473, but not Thr-308, phosphorylation of AKT to PI3K inhibitors suggested an activation of mTORC2 by NS5A. NS5A associated with eIF4F complex and polysomes, suggesting its active involvement in host translation. This is the first report that implicates an HCV protein in the up-regulation of host translation initiation apparatus through concomitant regulation of multiple pathways. Because both mTORC1 activation and eIF4E phosphorylation are involved in tumorigenesis, we propose that their simultaneous activation by NS5A might contribute significantly to the development of hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号