首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During recent years, the exopolysaccharides (EPS) produced by some strains of lactic acid bacteria and bifidobacteria have attracted the attention of researchers, mainly due to their potential technological applications. However, more recently, it has been observed that some of these EPS present immunomodulatory properties, which suggest a potential effect on human health. Whereas EPS from lactic acid bacteria have been studied in some detail, those of bifidobacteria largely remain uncharacterized in spite of the ubiquity of EPS genes in Bifidobacterium genomes. In this review, we have analysed the data collected in the literature about the potential immune-modulating capability of EPS produced by lactic acid bacteria and bifidobacteria. From this data analysis, as well as from results obtained in our group, a hypothesis relating the physicochemical characteristics of EPS with their immune modulation capability was highlighted. We propose that EPS having negative charge and/or small size (molecular weight) are able to act as mild stimulators of immune cells, whereas those polymers non-charged and with a large size present a suppressive profile.  相似文献   

2.
Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.  相似文献   

3.
Exopolymeric substances (EPS) are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM) and sucrose-poor (MSgg and Czapek) media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa) found only in biofilms, while small polymers (Mw<200 kD) dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.  相似文献   

4.

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0347-2) contains supplementary material, which is available to authorized users.  相似文献   

5.
Exopolysaccharides (EPS) play an important role in the rheology and texture of fermented food products. This is the first report demonstrating that homologous overexpression of a complete eps gene cluster in Lactococcus lactis leads to increased EPS production levels. A ninefold-elevated EPS plasmid copy number led to an almost threefold increase in the eps expression level, resulting in an almost fourfold increase in the NIZO B40 EPS production level. It was previously reported that increased EPS precursor levels did not influence NIZO B40 EPS production levels. However, the present results indicate that the maximal NIZO B40 EPS production level is limited by the activity level of the expression products of the eps gene cluster rather than by the level of EPS precursors.  相似文献   

6.
H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.  相似文献   

7.
Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were considerably more pronounced in cultures with EPS, glucose, and inulin than in controls without carbohydrates added, indicating that the substrates assayed were fermented by intestinal bacteria. Shifts in molar proportions of SCFA during incubation with EPS and inulin caused a decrease in the acetic acid-to-propionic acid ratio, a possible indicator of the hypolipidemic effect of prebiotics, with the lowest values for this parameter being obtained for EPS from the species Bifidobacterium longum and from Bifidobacterium pseudocatenulatum strain C52. This behavior was contrary to that found with glucose, a carbohydrate not considered to be a prebiotic and for which a clear increase of this ratio was obtained during incubation. Quantitative real-time PCR showed that EPS exerted a moderate bifidogenic effect, which was comparable to that of inulin for some polymers but which was lower than that found for glucose. PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments using universal primers was employed to analyze microbial groups other than bifidobacteria. Changes in banding patterns during incubation with EPS indicated microbial rearrangements of Bacteroides and Escherichia coli relatives. Moreover, the use of EPS from B. pseudocatenulatum in fecal cultures from some individuals accounted for the prevalence of Desulfovibrio and Faecalibacterium prausnitzii, whereas incubation with EPS from B. longum supported populations close to Anaerostipes, Prevotella, and/or Oscillospira. Thus, EPS synthesized by intestinal bifidobacteria could act as fermentable substrates for microorganisms in the human gut environment, modifying interactions among intestinal populations.  相似文献   

8.
9.
Bifidobacteria are well known for their human health-promoting effects and are therefore widely applied in the food industry. Members of the Bifidobacterium genus were first identified from the human gastrointestinal tract and were then found to be widely distributed across various ecological niches. Although the genetic diversity of Bifidobacterium has been determined based on several marker genes or a few genomes, the global diversity and evolution scenario for the entire genus remain unresolved. The present study comparatively analyzed the genomes of 45 type strains. We built a robust genealogy for Bifidobacterium based on 402 core genes and defined its root according to the phylogeny of the tree of bacteria. Our results support that all human isolates are of younger lineages, and although species isolated from bees dominate the more ancient lineages, the bee was not necessarily the original host for bifidobacteria. Moreover, the species isolated from different hosts are enriched with specific gene sets, suggesting host-specific adaptation. Notably, bee-specific genes are strongly associated with respiratory metabolism and are potential in helping those bacteria adapt to the oxygen-rich gut environment in bees. This study provides a snapshot of the genetic diversity and evolution of Bifidobacterium, paving the way for future studies on the taxonomy and functional genomics of the genus.  相似文献   

10.
The bile adapted strain Bifidobacterium animalis subsp. lactis IPLA-R1 secretes a high molecular weight exopolysaccharide (HMW-EPS) when grown on the surface of agar-MRSC. This EPS is composed of l-rhamnopyranosyl, d-glucopyranosyl, d-galactopyranosyl and d-galactofuranosyl residues in the ratio of 3:1:1:1. Linkage analysis and 1D and 2D NMR spectroscopy were used to show that the EPS has a hexasaccharide repeating unit with the following structure:Treatment of the EPS with mild acid cleanly removed the terminal d-galactofuranosyl residue. The eps cluster sequenced for strain IPLA-R1 showed high genetic homology with putative eps clusters annotated in the genomes of strains from the same species. It is of note that several genes coding for rhamnose-precursors are present in the eps cluster, which could be correlated with the high percentage of rhamnose detected in its EPS repeated unit.  相似文献   

11.
12.
Methylovorus sp. MP688 is an aerobic bacterium that can grow on reduced C1 compounds such as methanol, being regarded as an attractive producer for many commercial materials including polysaccharides. The aim of the study was to learn more information about the biochemical and physiological functions of extracellular polysaccharides (EPS) produced by Methylovorus sp. MP688. Firstly, gene clusters involved in EPS synthesis were identified by whole genome sequence analysis. Then EPS produced by Methylovorus sp. MP688 were isolated and purified by centrifugation, precipitation and deproteinization. Purified EPS displayed antioxidant activity towards DPPH free radical, hydroxyl radical and superoxide anion radical. Glucose, galactose and mannose were identified to be main component monosaccharides in EPS. One mutant with defect in EPS production was obtained by knocking out epsA gene within EPS synthesis cluster. Strain with deletion of epsA exhibited compromised growth ability in the presence of oxidative stress due to the sharp reduction in EPS synthesis. Meanwhile, the intracellular antioxidant scavengers were activated to a higher level in order to counteract with the excess harmful radicals. In addition, EPS were assimilated by Methylovorus sp. MP688 to survive under disadvantage condition when the preferred carbon source was exhausted. It was reasonable to conclude that EPS produced by Methylovorus sp. MP688 contributed to oxidative defense and bacterial survival under adverse condition.  相似文献   

13.
Probiotic microorganisms are ingested as food or supplements and impart positive health benefits to consumers. Previous studies have indicated that probiotics transiently reside in the gastrointestinal tract and, in addition to modulating commensal species diversity, increase the expression of genes for carbohydrate metabolism in resident commensal bacterial species. In this study, it is demonstrated that the human gut commensal species Bacteroides thetaiotaomicron efficiently metabolizes fructan exopolysaccharide (EPS) synthesized by probiotic Lactobacillus reuteri strain 121 while only partially degrading reuteran and isomalto/malto-polysaccharide (IMMP) α-glucan EPS polymers. B. thetaiotaomicron metabolized these EPS molecules via the activation of enzymes and transport systems encoded by dedicated polysaccharide utilization loci specific for β-fructans and α-glucans. Reduced metabolism of reuteran and IMMP α-glucan EPS molecules may be due to reduced substrate binding by components of the starch utilization system (sus). This study reveals that microbial EPS substrates activate genes for carbohydrate metabolism in B. thetaiotaomicron and suggests that microbially derived carbohydrates provide a carbohydrate-rich reservoir for B. thetaiotaomicron nutrient acquisition in the gastrointestinal tract.  相似文献   

14.
The need for sustainable agricultural practices is revitalizing the interest in biological nitrogen fixation and rhizobia-legumes symbioses, particularly those involving economically important legume crops in terms of food and forage. The genus Mesorhizobium includes species with high geographical dispersion and able to nodulate a wide variety of legumes, including important crop species, like chickpea or biserrula. Some cases of legume-mesorhizobia inoculant introduction represent exceptional opportunities to study the rhizobia genomes evolution and the evolutionary relationships among species. Complete genome sequences revealed that mesorhizobia typically harbour chromosomal symbiosis islands. The phylogenies of symbiosis genes, such as nodC, are not congruent with the phylogenies based on core genes, reflecting rhizobial host range, rather than species affiliation. This agrees with studies showing that Mesorhizobium species are able to exchange symbiosis genes through lateral transfer of chromosomal symbiosis islands, thus acquiring the ability to nodulate new hosts. Phylogenetic analyses of the Mesorhizobium genus based on core and accessory genes reveal complex evolutionary relationships and a high genomic plasticity, rendering the Mesorhizobium genus as a good model to investigate rhizobia genome evolution and adaptation to different host plants. Further investigation of symbiosis genes as well as stress response genes will certainly contribute to understand mesorhizobia-legume symbiosis and to develop more effective mesorhizobia inoculants.  相似文献   

15.
Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-l-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.  相似文献   

16.
Exopolysaccharides (EPS) are extracellular carbohydrate polymers synthesized by a large variety of bacteria. Their physiological functions have been extensively studied, but many of their roles have not yet been elucidated. We have sequenced the genomes of two isogenic strains of Bifidobacterium animalis subsp. lactis that differ in their EPS-producing phenotype. The original strain displays a nonmucoid appearance, and the mutant derived thereof has acquired a mucoid phenotype. The sequence analysis of their genomes revealed a nonsynonymous mutation in the gene Balat_1410, putatively involved in the elongation of the EPS chain. By comparing a strain from which this gene had been deleted with strains containing the wild-type and mutated genes, we were able to show that each strain displays different cell surface characteristics. The mucoid EPS synthesized by the strain harboring the mutation in Balat_1410 provided higher resistance to gastrointestinal conditions and increased the capability for adhesion to human enterocytes. In addition, the cytokine profiles of human peripheral blood mononuclear cells and ex vivo colon tissues suggest that the mucoid strain could have higher anti-inflammatory activity. Our findings provide relevant data on the function of Balat_1410 and reveal that the mucoid phenotype is able to alter some of the most relevant functional properties of the cells.  相似文献   

17.
The gut microbiota is of crucial importance for the host with considerable metabolic activity. Although great efforts have been made toward characterizing microbial diversity, measuring components'' metabolic activity surprisingly hasn''t kept pace. Here we combined pyrosequencing of amplified 16S rRNA genes with in vivo stable isotope probing (Pyro-SIP) to unmask metabolically active bacteria in the gut of cotton leafworm (Spodoptera littoralis), a polyphagous insect herbivore that consumes large amounts of plant material in a short time, liberating abundant glucose in the alimentary canal as a most important carbon and energy source for both host and active gut bacteria. With 13C glucose as the trophic link, Pyro-SIP revealed that a relatively simple but distinctive gut microbiota co-developed with the host, both metabolic activity and composition shifting throughout larval stages. Pantoea, Citrobacter and Clostridium were particularly active in early-instar, likely the core functional populations linked to nutritional upgrading. Enterococcus was the single predominant genus in the community, and it was essentially stable and metabolically active in the larval lifespan. Based on that Enterococci formed biofilm-like layers on the gut epithelium and that the isolated strains showed antimicrobial properties, Enterococcus may be able to establish a colonization resistance effect in the gut against potentially harmful microbes from outside. Not only does this establish the first in-depth inventory of the gut microbiota of a model organism from the mostly phytophagous Lepidoptera, but this pilot study shows that Pyro-SIP can rapidly gain insight into the gut microbiota''s metabolic activity with high resolution and high precision.  相似文献   

18.
Aims: To evaluate the capability of the exopolysaccharides (EPS) produced by lactobacilli and bifidobacteria from human and dairy origin to antagonize the cytotoxic effect of bacterial toxins. Methods and Results: The cytotoxicity of Bacillus cereus extracellular factors on Caco‐2 colonocytes in the presence/absence of the EPS was determined by measuring the integrity of the tissue monolayer and the damage to the cell membrane (extracellular lactate dehydrogenase activity). Additionally, the protective effect of EPS against the haemolytic activity of the streptolysin‐O was evaluated on rabbit erythrocytes. The EPS produced by Bifidobacterium animalis ssp. lactis A1 and IPLA‐R1, Bifidobacterium longum NB667 and Lactobacillus rhamnosus GG were able to counteract the toxic effect of bacterial toxins on the eukaryotic cells at 1 mg ml?1 EPS concentration. The EPS A1 was the most effective in counteracting the effect of B. cereus toxins on colonocytes, even at lower doses (0·5 mg ml?1), whereas EPS NB667 elicited the highest haemolysis reduction on erythrocytes. Conclusions: The production of EPS by lactobacilli and bifidobacteria could antagonize the toxicity of bacterial pathogens, this effect being EPS and biological marker dependent. Significance and Impact of the Study: This work allows gaining insight about the mechanisms that probiotics could exert to improve the host health.  相似文献   

19.
We used homologous and heterologous expression of the glycosyltransferase genes of the Lactococcus lactis NIZO B40 eps gene cluster to determine the activity and substrate specificities of the encoded enzymes and established the order of assembly of the trisaccharide backbone of the exopolysaccharide repeating unit. EpsD links glucose-1-phosphate from UDP-glucose to a lipid carrier, EpsE and EpsF link glucose from UDP-glucose to lipid-linked glucose, and EpsG links galactose from UDP-galactose to lipid-linked cellobiose. Furthermore, EpsJ appeared to be involved in EPS biosynthesis as a galactosyl phosphotransferase or an enzyme which releases the backbone oligosaccharide from the lipid carrier.  相似文献   

20.
Fungus-growing termites rely on symbiotic microorganisms to help break down plant material and to obtain nutrients. Their fungal cultivar, Termitomyces, is the main plant degrader and food source for the termites, while gut bacteria complement Termitomyces in the degradation of foodstuffs, fixation of nitrogen, and metabolism of amino acids and sugars. Due to the community complexity and because these typically anaerobic bacteria can rarely be cultured, little is known about the physiological capabilities of individual bacterial members of the gut communities and their associations with the termite host. The bacterium Trabulsiella odontotermitis is associated with fungus-growing termites, but this genus is generally understudied, with only two described species. Taking diverse approaches, we obtained a solid phylogenetic placement of T. odontotermitis among the Enterobacteriaceae, investigated the physiology and enzymatic profiles of T. odontotermitis isolates, determined the localization of the bacterium in the termite gut, compared draft genomes of two T. odontotermitis isolates to those of their close relatives, and examined the expression of genes relevant to host colonization and putative symbiont functions. Our findings support the hypothesis that T. odontotermitis is a facultative symbiont mainly located in the paunch compartment of the gut, with possible roles in carbohydrate metabolism and aflatoxin degradation, while displaying adaptations to association with the termite host, such as expressing genes for a type VI secretion system which has been demonstrated to assist bacterial competition, colonization, and survival within hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号