共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. 相似文献
3.
Sources and sinks of nitrous oxide (N2O) in deep lakes 总被引:2,自引:1,他引:2
As reported from marine systems, we found that also in15 prealpine lakes N2O concentrations werestrongly correlated with O2 concentrations. Inoxic waters below the mixed surface layer, N2Oconcentrations usually increased with decreasingO2 concentrations. N2O is produced in oxicepilimnia, in oxic hypolimnia and at oxic-anoxicboundaries, either in the water or at the sediment-waterinterface. It is consumed, however, incompletely anoxic layers. Anoxic water layers weretherefore N2O undersaturated. All studied lakeswere sources for atmospheric N2O, including thosewith anoxic, N2O undersaturated hypolimnia.However, compared to agriculture, lakes seem not tocontribute significantly to atmospheric N2Oemissions. 相似文献
4.
The influence of nutrient solution pH on the emission of N2O and N2 was investigated during cultivation of cucumbers in a closed-loop rockwool system. Between pH 4 and 7 these gaseous nitrogen losses increased from 1.6 to 21.1% of the N fertilizer input. This was equivalent to average flux rates of 0.06 and 0.85 kg nitrogen per hectare greenhouse area and day, respectively. The N2O/N2 ratio was inversely related to the total gaseous nitrogen losses. At neutral pH dinitrogen was the main emission product, whereas more acidic conditions favoured the emission of nitrous oxide. The pH effects were probably not indirectly affected by root respiration or exudation as much as by a direct inhibition of the activity of denitrifying microorganisms due to high H+ concentrations since similar results were obtained in unplanted nutrient solution systems with the addition of glucose as carbon source. Despite the low microbial denitrification activity under acidic conditions, nitrogen balance deficits of up to one-fifth of the N input still occurred. It is suggested these losses were predominantly caused by chemodenitrification. 相似文献
5.
A physiological study of a nitrifying sludge was carried out in a sequencing batch reactor (SBR). Pseudo steady-state nitrification conditions were obtained with an ammonium removal efficiency of 99% +/- 1% and 98% +/- 2% conversion of NH4+-N to NO3 - -N. The rate of biomass production was negligible (1.3 +/- 0.1 mg microbial protein-N.L(-1).d(-1)). The sludge presented good settling properties with sludge volume index values lower than 20 mL.g(-1) and an exopolymeric protein/carbohydrate ratio of 0.53 +/- 0.34. Kinetic results indicated that the nitrifying behavior of the sludge changed with the number of cycles. After 22 cycles, a decrease in the specific rate of NO3- -N production coupled with an increase in the NO2- -N accumulation were observed. These results showed that the activity of the nitrite oxidizing bacteria decreased at a longer operation time. Ammonia oxidizing bacteria were found to exhibit the best stability. After 4 months of operation, the specific rates of NH4+-N consumption and NO3- -N production were 1.72 NH4+-N per microbial protein-N per hour (g.g(-1).h(-1)) and 0.54 NO3- -N per microbial protein-N per hour (g.g(-1).h(-1)), respectively. 相似文献
6.
Gilda Carvalho Rikke L. Meyer Zhiguo Yuan Jürg Keller 《Enzyme and microbial technology》2006,39(7):1392-1398
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2− uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2− from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal. 相似文献
7.
Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm 总被引:14,自引:0,他引:14
The distribution of nitrifying bacteria of the genera Nitrosomonas, Nitrosospira, Nitrobacter and Nitrospira was investigated in a membrane-bound biofilm system with opposed supply of oxygen and ammonium. Gradients of oxygen, pH, nitrite and nitrate were determined by means of microsensors while the nitrifying populations along these gradients were identified and quantified using fluorescence in situ hybridization (FISH) in combination with confocal laser scanning microscopy. The oxic part of the biofilm which was subjected to high ammonium and nitrite concentrations was dominated by Nitrosomonas europaea -like ammonia oxidizers and by members of the genus Nitrobacter. Cell numbers of Nitrosospira sp. were 1–2 orders of magnitude lower than those of N. europaea . Nitrospira sp. were virtually absent in this part of the biofilm, whereas they were most abundant at the oxic–anoxic interface. In the totally anoxic part of the biofilm, cell numbers of all nitrifiers were relatively low. These observations support the hypothesis that N. europaea and Nitrobacter sp. can out-compete Nitrosospira and Nitrospira spp. at high substrate and oxygen concentrations. Additionally, they suggest microaerophilic behaviour of yet uncultured Nitrospira sp. as a factor of its environmental competitiveness. 相似文献
8.
Chemolithotrophic ammonia-oxidizing bacteria (AOB) can produce N2O, a highly potent greenhouse gas. Denaturing gradient gel electrophoresis (DGGE) analyses of the ammonia monooxygenase structural gene (amoA) and 16S rDNA gene were used to investigate the AOB community structure in the cover soils of municipal solid waste (MSW) landfills under three operating conditions: (a) MSW with soil cover, (b) MSW with soil cover, irrigation piping and vegetation, and (c) MSW covered with high-density polyethylene (HDPE) liner, soil cover, irrigation piping and vegetation. AOB species in MSW cover soils were significantly distinguished by the operation of HDPE liner isolation. The community structures of the Nitrosomonas europaea-like AOB species dominated in soils without HDPE liner isolation, whether vegetation and irrigation with landfill leachate existed or not, whereas Nitrospira-like AOB species dominated in soils with HDPE liner isolation. Lower N2O flux from the soils with HDPE liner isolation would be partially related to these special community structures. 相似文献
9.
Formation and long-term stability of nitrifying granules in a sequencing batch reactor 总被引:3,自引:0,他引:3
The formation and long-term stability of nitrifying granules in a sequencing batch reactor was investigated in this study. The results showed that nitrifying granules with a size of 240 microm and SVI of 40 ml g(-1) were formed on day 21 at a settling time of 10 min. Maintaining settling time at 15 min from day 57 to 183 did not affect the physical characteristics of sludge and the fraction of suspended floc in the sludge. In addition, nitrifying granules could tolerate the fluctuations of nitrogen loading rate from 0.72 to 1.8 g l(-1)d(-1) during 2 months without the change of physical characteristics. However, it was observed that complete nitrification to nitrate and partial nitrification to nitrite by sludge converted each other corresponding to the change of the influent NH4+-N concentration. Thus, an appropriate method is needed to maintain a stable complete nitrification or partial nitrification under the conditions with changing influent NH4+-N concentrations and nitrogen loading rates. 相似文献
10.
Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR 总被引:2,自引:0,他引:2
Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing
bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning,
terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results
suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated
that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP
results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major
peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational
conditions, such as ammonia loading and dissolved oxygen. 相似文献
11.
Ji?í ?uhel Miloslav ?imek Ronnie J. Laughlin David Bru Dominique Chèneby Catherine J. Watson Laurent Philippot 《Applied and environmental microbiology》2010,76(6):1870-1878
The objective of this study was to investigate how changes in soil pH affect the N2O and N2 emissions, denitrification activity, and size of a denitrifier community. We established a field experiment, situated in a grassland area, which consisted of three treatments which were repeatedly amended with a KOH solution (alkaline soil), an H2SO4 solution (acidic soil), or water (natural pH soil) over 10 months. At the site, we determined field N2O and N2 emissions using the 15N gas flux method and collected soil samples for the measurement of potential denitrification activity and quantification of the size of the denitrifying community by quantitative PCR of the narG, napA, nirS, nirK, and nosZ denitrification genes. Overall, our results indicate that soil pH is of importance in determining the nature of denitrification end products. Thus, we found that the N2O/(N2O + N2) ratio increased with decreasing pH due to changes in the total denitrification activity, while no changes in N2O production were observed. Denitrification activity and N2O emissions measured under laboratory conditions were correlated with N fluxes in situ and therefore reflected treatment differences in the field. The size of the denitrifying community was uncoupled from in situ N fluxes, but potential denitrification was correlated with the count of NirS denitrifiers. Significant relationships were observed between nirS, napA, and narG gene copy numbers and the N2O/(N2O + N2) ratio, which are difficult to explain. However, this highlights the need for further studies combining analysis of denitrifier ecology and quantification of denitrification end products for a comprehensive understanding of the regulation of N fluxes by denitrification.Denitrification is the microbial reduction of NO3− via NO2− to gaseous NO, N2O, and N2, which are then lost into the atmosphere (36). It therefore results in considerable loss of nitrogen, one of the most limiting nutrients for crop production in agriculture (20). Denitrification is also of environmental concern since, together with nitrification, it is the main biological process responsible for N2O emissions (7). N2O is a potent greenhouse gas which has a global warming potential about 320 times greater than that of CO2 and has a lifetime of approximately 120 years (32). In the stratosphere, N2O can also react with O2 to produce NO, which induces the destruction of stratospheric ozone (8). N2O can be released into the atmosphere by incomplete denitrification due to the effect of environmental conditions on the regulation of the different denitrification reductases (14, 41, 51), but it has recently been suggested that it could also be due to lack of nitrous oxide reductase in some denitrifiers (19, 41). Since N2O is an intermediate in the denitrification pathway, both the amount of N2O produced and the N2O/(N2O + N2) ratio are important in understanding and predicting N2O fluxes from soils.The main environmental factors known to influence the N2O/(N2O + N2) ratio are pH, organic carbon and NO3− availability, water content, and O2 partial pressure (50). Soil pH is one of the most important factors influencing both denitrification and N2O production (43). In general, the denitrification rate increases with increasing pH values (up to the optimum pH) while, in contrast, the N2O/(N2O + N2) ratio decreases (50). This relationship has been characterized in laboratory experiments (9, 45), but it is not clear whether the same relationships exist in the field because of methodological limitations of in situ measurement of N2 emissions (16). Nevertheless, 15N tracing experiments based on the addition of a labeled denitrification substrate to soil offer a useful tool to quantify emissions of both N2O and N2 in situ (47, 49). Soil pH is also an important factor influencing denitrifier community composition (35, 39), which can be an important driver of denitrification activity and N2O emissions (5, 21). A recent study reported a negative relationship between the proportion of bacteria genetically capable of reducing N2O within the total bacterial community and the N2O/(N2O + N2) ratio, with both being strongly correlated with soil pH (38).The objective of the present study was to explore the effect of changes in soil pH on in situ N2O and N2 emissions, denitrifying enzyme activity (DEA), and potential N2O production. In addition, we also investigated whether differences in N fluxes could be related to changes in the size of the microbial community possessing the different denitrification genes. A field experiment was conducted using replicated grassland plots in which the soil pH was modified by addition of either acid or hydroxide to the soil. A 15N tracer method was used to provide information on N emissions. In addition to measuring potential denitrification activity, the size of the denitrifier community was determined by real-time PCR quantification of the denitrification genes. 相似文献
12.
Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm 总被引:12,自引:0,他引:12
Gieseke A Purkhold U Wagner M Amann R Schramm A 《Applied and environmental microbiology》2001,67(3):1351-1362
The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O(2), NO(2)(-), and NO(3)(-) profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 microm at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 microm at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems. 相似文献
13.
The abundance of nitrifying bacteria, determined by most-probable-number procedures, within habitats of the Passaic River was as follows: rooted aquatic plants greater than algae approximately equal to rocks greater than sediments greater than greater than water. On the average, NH4+ oxidizers were 540-fold more abundant in the topmost 1 cm of sediment than in the water, and NO2- oxidizers were 250-fold more abundant. The population densities in this surface sediment at two nearby stations, one with a predominantly mineral stream bed and the other an organic ooze, did not differ significantly. Large numbers of nitrifiers were present to a depth of about 5 cm in a mineral sediment core. 相似文献
14.
Brown K Djinovic-Carugo K Haltia T Cabrito I Saraste M Moura JJ Moura I Tegoni M Cambillau C 《The Journal of biological chemistry》2000,275(52):41133-41136
Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data. 相似文献
15.
16.
C Matthies A Griesshammer M Schmittroth H L Drake 《Applied and environmental microbiology》1999,65(8):3599-3604
Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N(2)O)-emitting garden soils emitted 0.14 to 0.87 nmol of N(2)O h(-1) g (fresh weight)(-1) under in vivo conditions. L. rubellus obtained from N(2)O-emitting forest soil also emitted N(2)O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878-1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N(2)O; however, such worms emitted N(2)O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N(2)O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N(2)O emission by earthworms accounted for approximately 33% of the N(2)O emitted by garden soils. In vivo emission of N(2)O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N(2)O. In the presence of nitrate, acetylene increased the N(2)O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N(2)O. In vivo emission of N(2)O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N(2)O emission of dissected earthworm gut sections were substantially higher than the rates of N(2)O emission of dissected worms lacking gut sections, indicating that N(2)O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N(2)O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N(2)O-emitting earthworms produced N(2)O only under anoxic conditions. Collectively, these results indicate that gut-associated denitrifying bacteria are responsible for the in vivo emission of N(2)O by earthworms and contribute to the N(2)O that is emitted from certain terrestrial ecosystems. 相似文献
17.
Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. 相似文献
18.
19.
Three in situ methods of visualizing the cbbL gene in intact cells of nitrifying bacteria at different physiological states (dormant and metabolically active) were compared after epifluorescence microscopy and image analysis. FISH alone showed the weakest signal intensity. Direct in situ PCR, incorporating labeled nucleotides, showed the greatest sensitivity but also the greatest background. The combination of unlabeled in situ PCR followed by FISH showed relatively high sensitivity, along with the lowest background and highest specificity. Although functional gene expression was not examined in this study, visualization of the potential for carbon fixation in heterogeneous cultures of nitrifying bacteria was demonstrated. 相似文献
20.
Plate numbers of bacteria and relative incidence of strains capable of mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D)
in chernozem samples incubated for 14 d with the herbicide (50 ppm) in the presence or absence of glucose (1000 ppm) were
compared. Whereas the total number of bacteria increased 1.2-fold in the variant with 2,4-D and 2.4-fold in the variant with
glucose and the herbicide, the number of 2,4-D-mineralizing bacteria increased 12.1-fold and 34.2-fold, respectively. In a
collection of 96 isolates of soil bacteria substantially more strains capable of degradation of 2,4-D in the presence of glucose
were detected as compared with the variant without it, indicating that processes of cometabolic type are involved during the
degradation of this herbicide in the soil. 相似文献