首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparticles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au0. Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.  相似文献   

2.
This is the first study to demonstrate that the medicinal basidiomycete Lentinula edodes can reduce gold (III) ions from hydrogen tetrachloaurate (chloroauric acid) H[AuCl4] to the elementary state with the formation of spherical nanoparticles (nanospheres). When a culture was grown under submerged conditions in the presence of chloroauric acid, the appearance of an intense purple-red color of L. edodes filamentous hyphae was recorded, which indicates that gold ions were reduced to gold nanoparticles. Using transmission electron microscopy and X-ray fluorescence, we observed accumulation of colloidal gold by the fungal mycelium in the form of electron-dense nanospheres of 5 to 50 nm in diameter on the surface and inside fungal cells.  相似文献   

3.
The cyanobacteria Phormidium valderianum, P. tenue and Microcoleus chthonoplastes and the green algae Rhizoclonium fontinale, Ulva intestinalis, Chara zeylanica and Pithophora oedogoniana were exposed to hydrogen tetrachloroaurate solution and were screened for their suitability for producing nano‐gold. All three cyanobacteria genera and two of the green algae (Rhizoclonium fontinale and Ulva intestinalis) produced gold nanoparticles intracellularly, confirmed by purple colouration of the thallus within 72?h of treatment at 20°C. Extracted nanoparticle solutions were examined by UV‐vis spectroscopy, transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). XRD confirmed the reduction of Au (III) to Au (0). UV‐vis spectroscopy and TEM studies indicated the production of nanoparticles having different shapes and sizes. Phormidium valderianum synthesized mostly spherical nanoparticles, along with hexagonal and triangular nanoparticles, at basic and neutral pHs (pH 9 and pH 7, respectively). Medicinally important gold nanorods were synthesized (together with gold nanospheres) only by P. valderianum at acidic pH (pH 5); this was initially determined by two surface plasmon bands in UV‐vis spectroscopy and later confirmed by TEM. Spherical to somewhat irregular particles were produced by P. tenue and Ulva intestinalis (TEM studies). The UV‐vis spectroscopy of the supernatant of other algal extracts indicated the formation of mostly spherical particles. Production of gold nanoparticles by algae is more ecofriendly than purely chemical synthesis. However, the choice of algae is important: Chara zeylanica and Pithophora oedogoniana were found to be unable to produce nanoparticles.  相似文献   

4.

To form silver nanoparticles by reduction from metal ions in the presence of a reducing agent, D-glucose, a water-soluble derivative of chitosan, succinyl-chitosan, was used as a polymer matrix at room temperature. The synthesis of silver nanoparticles can also be carried out without a reducing agent by thermal activation of the system using an alkali (NaOH) as an accelerator. The presence of silver nanoparticles in the obtained colloidal solutions was judged by the appearance of an absorption band in the electron plasmon resonance spectra (?max = 417 nm). It has been shown that the use of an additional component, polyethylene oxide, in a macromolecular system makes it possible to obtain small silver nanoparticles (1–3 nm). The results of in vitro studies of the antimicrobial activity of the obtained colloidal solutions containing silver nanoparticles confirm that a decrease in the size of silver nanoparticles leads to an expansion of the spectrum of antibacterial activity of strains of gram-positive and gram-negative bacteria (B. subtilis ATCC 6633, S. aureus 209P, E. coli ATCC 25922) and to the manifestation of a pronounced antifungal action in relation to A. niger INA 00760.

  相似文献   

5.
Green, low-cost, and reproducible Lactobacillus-mediated biosynthesis of metal and oxide nanoparticles are reported. Silver and titanium dioxide nanoparticles are synthesized using Lactobacillus sp. procured from yoghurt and probiotic tablets. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of metallic and oxide nanoparticles. Individual nanoparticles having the dimensions of 10–25 nm (n-Ag) and 10–70 nm (n-TiO2) are found. The mechanism involved for the synthesis of metallic and oxide nanoparticles has also been discussed.  相似文献   

6.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

7.
Bacillus stearothermophilus leucine aminopeptidase II tagged C-terminally with either tri- or nona-lysine (BsLAPII-Lys3/9) was constructed and over-expressed in Escherichia coli M15 (pRep4). The recombinant enzymes were purified to homogeneity by nickel-chelate chromatography and their molecular masses were determined to be approximately 45 kDa by SDS/PAGE. Surface modification of colloidal gold with 16-mercaptohexadecanoic acid was employed to generate the carboxylated nanoparticles. BsLAPII-Lys9 was efficiently immobilized onto the carboxylated gold nanoparticles (AuNP-COOH) and the obtained bioconjugate showed excellent biocatalytic activity in the immobilized form. Additionally, the bioconjugate material exhibited a significant enhancement in temperature stability and could be reused over 5 successive cycles.  相似文献   

8.
A low-cost green and reproducible microbe (Lactobacillus sp.)-mediated biosynthesis of Sb2O3 nanoparticles is reported. The synthesis was performed at around room temperature. X-ray and transmission electron microscopy analyses were performed to ascertain the formation of Sb2O3 nanoparticles. X-ray analysis indicated that Sb2O3 nanoparticles had a face-centered cubic unit cell structure. Individual nanoparticles as well as a few aggregates of 3–12 nm were found. A possible mechanism for the synthesis of nano Sb2O3 is proposed.  相似文献   

9.

The goal of this study was the biosynthesis of silver nanoparticles (SNPs) mediated by the fungus Fusarium oxysporum, as well as the characterization of these nanoparticles including evaluation of the particles size and stability under different processing conditions. The results showed that the biosynthesis produced silver nanoparticles having a mean size of 34 nm and zeta potential values below −30 mV at the conditions used, characterizing the nanoparticles as being stable in suspension. Ultraviolet–visible spectroscopy and flame atomic absorption spectroscopy confirmed the formation of silver nanoparticles and Fourier transform infrared spectroscopy detected the bands corresponding to the binding vibration of amide I and II bands of proteins in addition to the presence of cyclic alkanes, cyclohexane, ethers, and aromatic hydrocarbons. Finally, field emission scanning electron microscopy and transmission electron microscopy revealed the formation of spherical and well-dispersed SNPs.

  相似文献   

10.
Microorganisms, their cell filtrates, and live biomass have been utilized for synthesizing various gold nanoparticles. The shape, size, stability as well as the purity of the bio synthesized nanoparticles become very essential for application purpose. In the present study, gold nanoparticles have been synthesized from the supernatant, live cell filtrate, and biomass of the fungus Penicillium brevicompactum. The fungus has been grown in potato dextrose broth which is also found to synthesize gold nanoparticles. The size of the particles has been investigated by Bio-TEM before purification, following purification and after storing the particles for 3 months under refrigerated condition. Different characterization techniques like X-ray diffraction, Fourier transform infrared spectroscopy, and UV–visible spectroscopy have been used for analysis of the particles. The effect of reaction parameters such as pH and concentration of gold salt have also been monitored to optimize the morphology and dispersity of the synthesized gold nanoparticles. A pH range of 5 to 8 has favored the synthesis process whereas increasing concentration of gold salt (beyond 2 mM) has resulted in the formation of bigger sized and aggregated nanoparticles. Additionally, the cytotoxic nature of prepared nanoparticles has been analyzed using mouse mayo blast cancer C2C12 cells at different time intervals (24, 48, and 72 h) of incubation period. The cells are cultivated in Dulbecco’s modified Eagle’s medium supplemented with fetal bovine serum with antibiotics (streptopenicillin) at 37°C in a 5% humidified environment of CO2. The medium has been replenished every other day, and the cells are subcultured after reaching the confluence. The viability of the cells is analyzed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method.  相似文献   

11.
The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV–Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au3+ ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.  相似文献   

12.
Bollyn  Jessica  Castelein  Lore  Smolders  Erik 《Plant and Soil》2019,438(1-2):297-311
Aims

The low phosphorus (P) fertilizer use efficiency in weathered, P deficient soils calls for better fertilizer formulations. We previously formulated nanoparticles containing P (NP-P) that were a successful fertilizer in nutrient solution. This study was set up to test the fate and the bioavailability of nanofertilizer-P and of that of native (colloid) P naturally present in soil.

Methods

The NP-P consisted of nano-ferrihydrite (~ 10 nm) loaded with phosphate (P-nFh) and stabilized with either natural organic matter (NOM) or hexametaphosphate (HMP). Natural colloid concentrations were increased with KOH addition, as deflocculating agent, to soil; all tests used samples from P deficient, highly weathered soils.

Results

Pot trials with rice seedlings did not reveal larger P uptake in the NP-P amended soils compared to equal doses of soluble PO4 or soluble HMP. Total Fe concentrations in soil solutions were unaffected by NP-P addition, whereas natural colloidal Fe and P markedly increased by KOH addition. The bioavailability of native colloidal P, mobilized by KOH addition, could not be assessed due to lack of growth, likely related to collapse of the soil structure.

Conclusions

This study showed that P-loaded iron oxyhydroxide NPs insufficiently enhanced soluble P in soil to offer benefits over soluble fertilizers, likely because of a combined effect of lower diffusivity of NPs compared to Pi and lower bioavailability of NP-P than Pi. Smaller particles or small labile organic colloids might offer an improvement in both aspects.

  相似文献   

13.
Irradiation of [Ce(hfac)3(diglyme)] (hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato and diglyme (DG) = 2,5,8,11,14-pentaoxapentadecane) in chlorinated solvents (CH2Cl2, CCl4) with UV light led to luminescent colloidal CeCl3 that was characterized by transmission electron microscopy (TEM) analysis. When a substrate, quartz or silicon was present in the reaction cell, photoluminescent films were obtained, containing either pure CeCl3 or mixtures of CeCl3, CeF3 and CeOx in function of the experimental parameters of irradiation. Nanostructured and luminescent pure CeCl3 films were obtained by irradiation of the cerium complex in CCl4 at high intensity light for a few minutes. The films were characterized by X-ray diffraction (XRD), Energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), TEM, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The kinetics of the [Ce(hfac)3(diglyme)] solution photodegradation, followed by UV spectrophotometry and spectrofluorimetry, pointed to CeCl3 formation by a solvent-initiated reaction, whereas the other inorganic compounds were the products of side reactions.  相似文献   

14.
The increasing demand and limited natural resources for industrially important platinum‐group metal (PGM) catalysts render the recovery from secondary sources such as industrial waste economically interesting. In the process of palladium (Pd) recovery, microorganisms have revealed a strong potential. Hitherto, bacteria with the property of dissimilatory metal reduction have been in focus, although the biochemical reactions linking enzymatic Pd(II) reduction and Pd(0) deposition have not yet been identified. In this study we investigated Pd(II) reduction with formate as the electron donor in the presence of Gram‐negative bacteria with no documented capacity for reducing metals for energy production: Cupriavidus necator, Pseudomonas putida, and Paracoccus denitrificans. Only large and close‐packed Pd(0) aggregates were formed in cell‐free buffer solutions. Pd(II) reduction in the presence of bacteria resulted in smaller, well‐suspended Pd(0) particles that were associated with the cells (called “bioPd(0)” in the following). Nanosize Pd(0) particles (3–30 nm) were only observed in the presence of bacteria, and particles in this size range were located in the periplasmic space. Pd(0) nanoparticles were still deposited on autoclaved cells of C. necator that had no hydrogenase activity, suggesting a hydrogenase‐independent formation mechanism. The catalytic properties of Pd(0) and bioPd(0) were determined by the amount of hydrogen released in a reaction with hypophosphite. Generally, bioPd(0) demonstrated a lower level of activity than the Pd(0) control, possibly due to the inaccessibility of the Pd(0) fraction embedded in the cell envelope. Our results demonstrate the suitability of bacterial cells for the recovery of Pd(0), and formation and immobilization of Pd(0) nanoparticles inside the cell envelope. However, procedures to make periplasmic Pd(0) catalytically accessible need to be developed for future nanobiotechnological applications. Biotechnol. Bioeng. 2010;107: 206–215. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Controlled thermolysis of gold(I) complex with no use of solvent was investigated as a novel synthetic method of gold nanoparticles. A series of precursors, ammonium gold(I) thiolate [RN(CH3)3][Au(SC12H25)2] (R = C8H17, C12H25, and C14H29) and [(C18H37)2N(CH3)2][Au(SC12H25)2], have been prepared and the thermolysis of those precursors was conducted at 180 °C for 5 h under an N2 atmosphere, providing spherical gold nanoparticles stabilized by alkyl groups derived from the precursor, gold(I) complex. In spite of thermolysis process, the average diameter of gold nanoparticles deriving from [C12H25N(CH3)3][Au(SC12H25)2] was 22 nm, but the size distribution ranges from 11 to 76 nm. For the purpose of the size regulation of the gold nanoparticles, equimolar primary, secondary, or tertiary alkylamines are added as stabilizer and mild reductant to the controlled thermolysis of gold(I) complex at lower temperature of 165 °C for 5 h. The gold nanoparticles obtained by the controlled thermolysis in the presence of stearylamine are well regulated and almost monodispersed nanoparticles with average diameter of 7.5 nm. Such size regulation resulted from the inhibition of the growth of gold nuclei by transforming reaction from ammonium and thiolate moieties to neutral tertiary amine, thiol and sulfide, which function as stabilizer for gold nanoparticles.  相似文献   

16.
Abstract

Palladium, the building block of white gold, has been found to exhibit extraordinary properties in nanotechnological products produced in recent years. The most prominent feature of palladium is adsorbing and storing high levels of hydrogen. Therefore, the demand for palladium in the world increased excessively in the 2000s. In the present study, palladium nanoparticles (PdNPs) were biosynthesized by the extract of Diospyros kaki leaves as bio-stimulator. D. kaki, also called persimmon, was collected in a local area in Istanbul Turkey. PdNP formation was screened by analyzing UV-Vis spectrophotometer at 250–550?nm. The nanoparticles were characterized by scanning electron microscope which revealed that the biosynthesized PdNPs were in sizes ranging from 50 to 120?nm. Fourier transform infrared spectroscopy applied on both D. kaki leaf extract and PdNPs was used to decide on the reactive groups managing the reduction of the biosynthesized nanoparticles. Also, the PdNPs showed reasonably proficient antibacterial efficacy for both Escherichia coli and Staphylococcus aureus and the zones of inhibition were found as 18 and 10.5 mm, respectively.  相似文献   

17.
Films based on TiO2 nanoparticles (NPs) have been successfully used as sensing elements in chemical sensors. TiO2 colloidal suspensions can be obtained by spontaneous hydrolysis in acidic solutions of Ti(IV) compounds. The obtained TiO2 NPs can be employed to build up nanostructured films. With the purpose of preparing TiO2-based nanostructured, imprinted materials as sensing elements for piezoelectric sensors, we obtained TiO2 NP dispersions by hydrolyzing potassium titanyl oxalate in the presence of a target analyte (tyrosine). Since morphological properties of the synthesized NPs are known to influence the nanostructured film characteristics, an analytical strategy to characterize such colloidal systems can combine a size-based separation method with spectroscopic analysis to correlate the particle size distribution (PSD) with the particle-target interaction properties able to determine the sensing efficiency.In this work, we present the characterization of colloidal tyrosine-TiO2 NP systems by flow field-flow fractionation (FlFFF) with online, UV/Vis absorption detection and offline fluorescence analysis. FlFFF eliminates the possible contribution of free tyrosine to the absorption and fluorescence properties of the NPs. FlFFF also fractionates NPs on a size basis. Particle size distribution (PSD) profiles of the fractionated NPs are then obtained by conversion of the multi-wavelength UV/Vis fractograms. Size of the fractionated NPs is finally related to fluorescence properties of the collected NPs fractions. Good correlation between the fluorescence intensity, which is proportional to the tyrosine uptake, and the FlFFF-based, NP mass-size frequency distribution finally confirms the existence of tyrosine-TiO2 NP interaction.  相似文献   

18.
Abstract

The antimicrobial activity of gold and silver nanoparticles (AuNPs, AgNPs), chitosan (CS) and their combinations was established by determining the minimum inhibitory concentration for planktonic (MICPC80) and biofilm growth (MICBC80), for biofilm formation (MICBF80), metabolic activity (MICBM80) and reduction (MICBR80), and for the metabolic activity of preformed biofilm (MICMPB80). Biofilms were quantified in microtitre plates by crystal violet staining and metabolic activity was evaluated by the MTT assay. Chitosan effectively suppressed biofilm formation (0.31–5?mg ml?1) in all the tested strains, except Salmonella enterica Infantis (0.16–2.5?mg ml?1) where CS and its combination with AgNPs induced biofilm formation. Nanoparticles inhibited biofilm growth only when the highest concentrations were used. Even though AuNPs, AgNPs and CS were not able to remove biofilm mass, they reduced its metabolic activity by at least 80%. The combinations of nanoparticles with CS did not show any significant positive synergistic effect on the tested target properties.  相似文献   

19.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

20.
Synthesis of gold nanoparticles was carried out using Pongammia pinnata (pongam) leaf extract and their anticancer and antimycobacterial activities were studied. Gold nanoparticle formation was confirmed by UV–vis, XRD and HR-TEM. The anticancer efficacies of the biogenic gold nanoparticles were analyzed using cytotoxicity, cell morphology analysis, oxidative DNA damage, apoptosis detection and toxicity studies. Biogenic gold nanoparticles inhibited breast cancer cell line (MCF-7) proliferation with an efficacy of IC50 of 1.85 μg/mL. The antimycobacterial potential of the biogenic gold nanoparticles was screened against M. tuberculosis by Luciferase Reporter Phage (LRP) assay. The gold nanoparticles showed inhibition against sensitive M. tuberculosis with the minimum inhibitory concentration (MIC) of 10 μg/mL whereas no inhibition was found against the rifampicin resistant M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号