首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human artificial chromosome (HAC) vectors are an important gene transfer system for expression and complementation studies. We describe a significant advance in HAC technology using infectious herpes simplex virus type 1 (HSV-1) amplicon vectors for delivery. This highly efficient method has allowed gene-expressing HACs to be established in glioma-, kidney- and lung-derived cells. We also developed an HSV-1 hypoxanthine phosphoribosyltransferase (HPRT) HAC vector, which generated functional HPRT-expressing HACs that complemented the genetic deficiency in human cells. The transduction efficiency of the HSV-1 HAC amplicons is several orders of magnitude higher than lipofection-mediated delivery. Studies on HAC stability between cell types showed important differences that have implications for HAC development and gene expression in human cells. This is the first report of establishing gene-expressing HACs in human cells by using an efficient, high-capacity viral vector and by identifying factors that are involved in cell-type-specific HAC instability. The work is a significant advance for HAC technology and the development of HAC gene expression systems in human cells.  相似文献   

2.
人类人工染色体构建及其作为基因治疗载体的价值   总被引:5,自引:0,他引:5  
人类人工染色体(HAC)作为基因治疗载体将解决基因治疗存在的一些关键问题。本文探讨了在不完全了解着丝粒、复制起始点、端粒等人类染色体基本功能单位的情况下构建HAC的三种策略。利用染色体基本功能单位在细胞内构建成功的第一代HAC,解决了HAC构建的一些难题,同时也带来了某些新的问题。HAC作为基因治疗载体具有很多优势,但第一代HAC离它作为基因治疗载体还相距很远。为此,作者正在进行解决这些问题的尝试。  相似文献   

3.
We cloned a cDNA (HAC4) that encodes the hyperpolarization-activated cation channel (If or Ih) by screening a rabbit sinoatrial (SA) node cDNA library using a fragment of rat brain If cDNA. HAC4 is composed of 1150 amino acid residues, and its cytoplasmic N- and C-terminal regions are longer than those of HAC1-3. The transmembrane region of HAC4 was most homologous to partially cloned mouse If BCNG-3 (96%), whereas the C-terminal region of HAC4 showed low homology to all HAC family members so far cloned. Northern blotting revealed that HAC4 mRNA was the most highly expressed in the SA node among the rabbit cardiac tissues examined. The electrophysiological properties of HAC4 were examined using the whole cell patch-clamp technique. In COS-7 cells transfected with HAC4 cDNA, hyperpolarizing voltage steps activated slowly developing inward currents. The half-maximal activation was obtained at -87.2 +/- 2.8 mV under control conditions and at -64.4 +/- 2.6 mV in the presence of intracellular 0.3 mM cAMP. The reversal potential was -34.2 +/- 0.9 mV in 140 mM Na+o and 5 mM K+o versus 10 mM Na+i and 145 mM K+i. These results indicate that HAC4 forms If in rabbit heart SA node.  相似文献   

4.
OBJECTIVE: To test the hypothesis that dedifferentiated adult human cartilage chondrocytes (HAC) are a true multipotent primitive population. METHODS: Studies to characterize dedifferentiated HAC included cell cycle and quiescence analysis, cell fusion, flow-FISH telomere length assays, and ABC transporter analysis. Dedifferentiated HAC were characterized by flow cytometry, in parallel with bone marrow mesenchymal stem cells (MSC) and processed lipoaspirate (PLA) cells. The in vitro differentiation potential of dedifferentiated HAC was studied by cell culture under several inducing conditions, in multiclonal and clonal cell populations. RESULTS: Long-term HAC cultures were chromosomically stable and maintained cell cycle dynamics while showing telomere shortening. The phenotype of dedifferentiated HAC was quite similar to that of human bone marrow MSC. In addition, this population expressed human embryonic stem cell markers. Multiclonal populations of dedifferentiated HAC differentiated to chondrogenic, osteogenic, adipogenic, myogenic, and neurogenic lineages. Following VEGF induction, dedifferentiated HAC expressed characteristics of endothelial cells, including AcLDL uptake. A total of 53 clonal populations of dedifferentiated HAC were efficiently expanded; 17 were able to differentiate to chondrogenic, osteogenic, and adipogenic lineages. No correlation was observed between telomere length or quiescent population and differentiation potential in the clones assayed. CONCLUSION: Dedifferentiated HAC should be considered a human multipotent primitive population.  相似文献   

5.
Human artificial chromosomes (HACs), which carry a fully functional centromere and are maintained as a single-copy episome, are not associated with random mutagenesis and offer greater control over expression of ectopic genes on the HAC. Recently, we generated a HAC with a conditional centromere, which includes the tetracycline operator (tet-O) sequence embedded in the alphoid DNA array. This conditional centromere can be inactivated, loss of the alphoidtet-O (tet-O HAC) by expression of tet-repressor fusion proteins. In this report, we describe adaptation of the tet-O HAC vector for gene delivery and gene expression in human cells. A loxP cassette was inserted into the tet-O HAC by homologous recombination in chicken DT40 cells following a microcell-mediated chromosome transfer (MMCT). The tet-O HAC with the loxP cassette was then transferred into Chinese hamster ovary cells, and EGFP transgene was efficiently and accurately incorporated into the tet-O HAC vector. The EGFP transgene was stably expressed in human cells after transfer via MMCT. Because the transgenes inserted on the tet-O HAC can be eliminated from cells by HAC loss due to centromere inactivation, this HAC vector system provides important novel features and has potential applications for gene expression studies and gene therapy.  相似文献   

6.
7.
The aim of this study was to investigate the interconnection between the processes of proliferation, dedifferentiation, and intrinsic redifferentiation (chondrogenic) capacities of human articular chondrocyte (HAC), and to identify markers linking HAC dedifferentiation status with their chondrogenic potential. Cumulative population doublings (PD) of HAC expanded in monolayer culture were determined, and a threshold range of 3.57–4.19 PD was identified as indicative of HAC loss of intrinsic chondrogenic capacity in pellets incubated without added chondrogenic factors. While several specific gene and surface markers defined early HAC dedifferentiation process, no clear correlation with the loss of intrinsic chondrogenic potential could be established. CD90 expression during HAC monolayer culture revealed two subpopulations, with sorted CD90‐negative cells showing lower proliferative capacity and higher chondrogenic potential compared to CD90‐positive cells. Although these data further validated PD as critical for in vitro chondrogenesis, due to the early shift in expression, CD90 could not be considered for predicting chondrogenic potential of HAC expanded for several weeks. In contrast, an excellent mathematically modeled correlation was established between PD and the decline of HAC expressing the intracellular marker S100, providing a direct link between the number of cell divisions and dedifferentiation/loss of intrinsic chondrogenic capacity. Based on the dynamics of S100‐positive HAC during expansion, we propose asymmetric cell division as a potential mechanism of HAC dedifferentiation, and S100 as a marker to assess chondrogenicity of HAC during expansion, of potential value for cell‐based cartilage repair treatments. J. Cell. Physiol. 222: 411–420, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
In traditional Asian medicine, Aralia cordata (AC) is a known as a pain reliever and anti‐inflammatory drug. Although several of its biological activities have been reported, the immunomodulatory effects of a hot water extract of AC (HAC) have not yet been described. The aim of this study was to investigate whether HAC modulates the activation of macrophages, which play important roles in innate immune responses against microbial pathogens, and if so, to determine the molecular mechanisms by which HAC mediates this process. It was found that HAC activates bone marrow‐derived macrophages (BMDM) and increases amounts of nitric oxide and proinflammatory cytokines in a dose‐dependent manner. In addition, HAC was found to induce phosphorylation of NF‐κB and mitogen‐activated protein kinases (MAPKs), including c‐Jun N‐terminal kinases, extracellular signal‐regulated kinases and p38. Interestingly, these effects were absent in BMDM prepared from myeloid differentiation protein 88‐knockout mice. Polysaccharides from HAC exerted stronger immunostimulatory effects than HAC itself. Furthermore, orally administered HAC clearly enhanced clearance of the intracellular pathogen Listeria monocytogenes by boosting innate immune responses. These results demonstrate that HAC exerts immunostimulatory effects through the TLR/MyD88 and NF‐κB/MAPK signal transduction pathways.  相似文献   

9.

Background  

Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division. In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss. In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA.  相似文献   

10.
人类人工染色体作为转基因载体的应用前景   总被引:1,自引:0,他引:1  
左国伟  吕凤林 《遗传》2005,27(6):995-1000
自1997年首次成功构建人类人工染色体(human artificial chromosome,HAC)以来,对其理论、方法学问题的研究一直就是人们关注的焦点,并引起了科学家们的极大兴趣,目前已能采用不同的方法获得多种类型的HAC。与酵母人工染色体(YAC)、细菌人工染色体(BAC)等相比,HAC不整合到细胞的基因组中,以一个独立的功能性染色体单位而存在,并在细胞中进行正常的有丝分裂和减数分裂。迄今的研究表明:HAC可以携带大片段基因组DNA,是研究人类基因表达和调控、染色体功能基本单元的重要工具,也是建立HAC动物模型的重要手段。在未来的基因治疗方面有着广阔的应用前景。  相似文献   

11.
The unfolded protein response (UPR) is an essential signal transduction to cope with protein-folding stress in the endoplasmic reticulum. In the yeast UPR, the unconventional splicing of HAC1 mRNA is a key step. Translation of HAC1 pre-mRNA (HAC1u mRNA) is attenuated on polysomes and restarted only after splicing upon the UPR. However, the precise mechanism of this restart remained unclear. Here we show that yeast tRNA ligase (Rlg1p/Trl1p) acting on HAC1 ligation has an unexpected role in HAC1 translation. An RLG1 homologue from Arabidopsis thaliana (AtRLG1) substitutes for yeast RLG1 in tRNA splicing but not in the UPR. Surprisingly, AtRlg1p ligates HAC1 exons, but the spliced mRNA (HAC1i mRNA) is not translated efficiently. In the AtRLG1 cells, the HAC1 intron is circularized after splicing and remains associated on polysomes, impairing relief of the translational repression of HAC1i mRNA. Furthermore, the HAC1 5′ UTR itself enables yeast Rlg1p to regulate translation of the following ORF. RNA IP revealed that yeast Rlg1p is integrated in HAC1 mRNP, before Ire1p cleaves HAC1u mRNA. These results indicate that the splicing and the release of translational attenuation of HAC1 mRNA are separable steps and that Rlg1p has pivotal roles in both of these steps.  相似文献   

12.
Genome sequence data were used to clone and express two sialyltransferase enzymes of the GT-42 family from Helicobacter acinonychis ATCC 51104, a gastric disease isolate from Cheetahs. The deposited genome sequence for these genes contains a large number of tandem repeat sequences in each of them: HAC1267 (RQKELE)(15) and HAC1268 (EEKLLEFKNI)(13). We obtained two clones with different numbers of repeat sequences for the HAC1267 gene homolog and a single clone for the HAC1268 gene homolog. Both genes could be expressed in Escherichia coli and sialyltransferase activity was measured using synthetic acceptor substrates containing a variety of terminal sugars. Both enzymes were shown to have a preference for N-acetyllactosamine, and they each made a product with a different linkage to the terminal galactose. HAC1267 is a mono-functional α2,3-sialyltransferase, whereas HAC1268 is a mono-functional α2,6-sialyltransferase and is the first member of GT-42 to show α2,6-sialyltransferase activity.  相似文献   

13.
Efficiency of de novo centromere formation in human artificial chromosomes   总被引:5,自引:0,他引:5  
In a comparative study, we show that human artificial chromosome (HAC) vectors based on alpha-satellite (alphoid) DNA from chromosome 17 but not the Y chromosome regularly form HACs in HT1080 human cells. We constructed four structurally similar HAC vectors, two with chromosome 17 or Y alphoid DNA (17alpha, Yalpha) and two with 17alpha or Yalpha and the hypoxanthine guanine phosphoribosyltransferase locus (HPRT1). The 17alpha HAC vectors generated artificial minichromosomes in 32-79% of the HT1080 clones screened, compared with only approximately 4% for the Yalpha HAC vectors, indicating that Yalpha is inefficient at forming a de novo centromere. The 17alpha HAC vectors produced megabase-sized, circular HACs containing multiple copies of alphoid fragments (60-250 kb) interspersed with either vector or HPRT1 DNA.The 17alpha-HPRT1 HACs were less stable than those with 17alpha only, and these results may influence the design of new HAC gene transfer vectors.  相似文献   

14.
Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by the use of viral-based vectors. The recently developed alphoidtetO-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of tTS chromatin modifiers to its centromeric tetO sequences. This provides unique control for phenotypes induced by genes loaded into the alphoidtetO-HAC. However, inactivation of the HAC kinetochore requires transfection of cells by a retrovirus vector, a step that is potentially mutagenic. Here, we describe an approach to re-engineering the alphoidtetO-HAC that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. In the new HAC vector, a tTS-EYFP cassette is inserted into a gene-loading site along with a gene of interest. Expression of the tTS generates a self-regulating fluctuating heterochromatin on the alphoidtetO-HAC that induces fast silencing of the genes on the HAC without significant effects on HAC segregation. This silencing of the HAC-encoded genes can be readily recovered by adding doxycycline. The newly modified alphoidtetO-HAC-based system has multiple applications in gene function studies.  相似文献   

15.
The absolute and relative contents of hydrolysis available calories (HAC), tanninfree HAC (TFHAC) and chemical available calories (CAC) of the detritus during the seasonal decomposition of mangrove (Kandelia candel (L.) Druce) leaf litter in Fujian, China was determined. Defined arbitrarily as the portion of total caloric content in detritus hydrolized with 1 mol/L HC1 for 6 h at 20 ℃, HAC is presumed to be a rough index of potential energy readily utilized by marine detritivores. TFHAC is the remaining calories of HAC devoid of tannin-attributed calories and CAC is defined as the total caloric content derived from raw protein, raw fat and soluble sugar. The results showed that in leaf litter, the seasonal mean caloric contents were 4.06 kJ/g DW or 20.85% of the total caloric content for HAC and 3.23 kJ/g DW or 16.68% of the total caloric content for TFHAC, which decreased to 1.75 kJ/g DW or 9.25% for HAC, and 1. 64 kJ/g DW or 8.20% for TFHAC in the detritus at half-life of decomposition. The difference in contents between HAC and TFHAC diminished as decomposition was progressed. The contents of CAC generally increased during decomposition, always higher than those of HAC and TFHAC, suggesting that some protein and fat in detritus are nonavailable to detritivores since they are hydrolyzed by week acid. The value of detritus HAC per unit ash-free dry weight (AFDW), as determined at the time when the detritus lost 23% of its initial weight, ranged from 16. 16 to 17.41 kJ/g AFDW and increased rapidly to a maximum of 24.00 kJ/g AFDW at 49% dry weight loss of detritus during decomposition. The detritus derived from mangrove fallen leaves had a low available caloric content and an moderate caloric value of HAC as compared with detritus of other marine plants. Finally, the relationship between HAC, TFHAC and CAC was discussed and some points of attention relevant to the application of those indices were given in relation  相似文献   

16.
17.
Hexamminecobalt(III) (HAC) chloride was found to have a potent inhibitory effect on glucose-induced insulin secretion from pancreatic islets. HAC at 2 mm inhibited the secretion in response to 22.2 mm glucose by 90% in mouse islets. Perifusion experiments revealed that the first phase of insulin secretion was severely suppressed and that the second phase of secretion was completely abrogated. Removal of HAC from the perifusate immediately restored insulin secretion with a transient overshooting above the normal level. However, HAC failed to affect glucose-induced changes in d-[6-(14)C]glucose oxidation, levels of reduced forms of NAD and NADP, mitochondrial membrane potential, ATP content, cytosolic calcium concentration, or calcium influx into mitochondria. Furthermore, HAC inhibited 50 mm potassium-stimulated insulin secretion by 77% and 10 microm mastoparan-stimulated insulin secretion in the absence of extracellular Ca(2+) by 80%. The results of a co-immunoprecipitation study of lysates from insulin-secreting betaHC9 cells using anti-syntaxin and anti-vesicle-associated membrane protein antibodies for immunoprecipitation or Western blotting suggested that HAC inhibited disruption of the SNARE complex, which is normally observed upon glucose challenge. These results suggest that the inhibitory effect of HAC on glucose-induced insulin secretion is exerted at a site(s) distal to the elevation of cytosolic [Ca(2+)], possibly in the exocytotic machinery per se; and thus, HAC may serve as a useful tool for dissecting the molecular mechanism of insulin exocytotic processes.  相似文献   

18.
In this study, a time-course comparison of human articular chondrocytes (HAC) and bone marrow-derived mesenchymal stem cells (MSC) immunophenotype was performed in order to determine similarities/differences between both cell types during monolayer culture, and to identify HAC surface markers indicative of dedifferentiation. Our results show that dedifferentiated HAC can be distinguished from MSC by combining CD14, CD90, and CD105 expression, with dedifferentiated HAC being CD14+/CD90bright/CD105dim and MSC being CD14-/CD90dim/CD105bright. Surface markers on MSC showed little variation during the culture, whereas HAC showed upregulation of CD90, CD166, CD49c, CD44, CD10, CD26, CD49e, CD151, CD51/61, and CD81, and downregulation of CD49a, CD54, and CD14. Thus, dedifferentiated HAC appear as a bona fide cell population rather than a small population of MSC amplified during monolayer culture. While most of the HAC surface markers showed major changes at the beginning of the culture period (Passage 1-2), CD26 was upregulated and CD49a downregulated at later stages of the culture (Passage 3-4). To correlate changes in HAC surface markers with changes in extracellular matrix gene expression during monolayer culture, CD14 and CD90 mRNA levels were combined into a new differentiation index and compared with the established differentiation indices based on the ratios of mRNA levels of collagen type II to I (COL2/COL1) and of aggrecan to versican (AGG/VER). A correlation of CD14/CD90 ratio at the mRNA and protein level with the AGG/VER ratio during HAC dedifferentiation in monolayer culture validated CD14/CD90 as a new membrane and mRNA based HAC differentiation index.  相似文献   

19.
20.
Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号