首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a negative feedback loop between the signaling protein phospholipase D (PLD), phosphatidic acid (PA), and a specific set of microRNAs (miRNAs) during nutrient starvation of breast cancer cells. We show that PLD expression is increased in four breast cancer cell lines and that hypoxia, cell overcrowding, and nutrient starvation for 3 to 6 h increase expression even further. However, after prolonged (>12-h) starvation, PLD levels return to basal or lower levels. The mechanism for this is as follows. First, during initial starvation, an elevated PA (the product of PLD enzymatic activity) activates mTOR and S6K, known to inhibit apoptosis, and enhances cell migration especially in post-epithelial-to-mesenchymal transition (post-EMT) cancer cells. Second, continued PA production in later starvation induces expression of PLD-targeting microRNA 203 (miR-203), miR-887, miR-3619-5p, and miR-182, which reduce PLD translation. We provide direct evidence for a feedback loop, whereby PLD induction upon starvation leads to PA, which induces expression of miRNAs, which in turn inhibits PLD2 translation. The physiological relevance for breast cancer cells is that as PA can activate cell invasion, then, due to the negative feedback, it can deprive mTOR and S6K of their natural activator. It can further prevent inhibition of apoptosis and allow cells to survive nutrient deprivation, which normal cells cannot do.  相似文献   

2.
Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA) decreased viability of cancer cells from different origins such as mesothelioma (H2373), ovarian cancer (Skov3 and Ovcar-5) and pancreatic cancer (Miapaca2 and Panc-1). Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition). Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress) pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429) with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.  相似文献   

3.
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.  相似文献   

4.
Neuropilins, initially characterized as neuronal receptors, act as co-receptors for cancer related growth factors and were recently involved in several signaling pathways leading to cytoskeletal organization, angiogenesis and cancer progression. Then, we sought to investigate the ability of neuropilin-2 to orchestrate epithelial-mesenchymal transition in colorectal cancer cells. Using specific siRNA to target neuropilin-2 expression, or gene transfer, we first observed that neuropilin-2 expression endows HT29 and Colo320 for xenograft formation. Moreover, neuropilin-2 conferred a fibroblastic-like shape to cancer cells, suggesting an involvement of neuropilin-2 in epithelial-mesenchymal transition. Indeed, the presence of neuropilin-2 in colorectal carcinoma cell lines was correlated with loss of epithelial markers such as cytokeratin-20 and E-cadherin and with acquisition of mesenchymal molecules such as vimentin. Furthermore, we showed by surface plasmon resonance experiments that neuropilin-2 is a receptor for transforming-growth factor-β1. The expression of neuropilin-2 on colon cancer cell lines was indeed shown to promote transforming-growth factor-β1 signaling, leading to a constitutive phosphorylation of the Smad2/3 complex. Treatment with specific TGFβ-type1 receptor kinase inhibitors restored E-cadherin levels and inhibited in part neuropilin-2-induced vimentin expression, suggesting that neuropilin-2 cooperates with TGFβ-type1 receptor to promote epithelial-mesenchymal transition in colorectal cancer cells. Our results suggest a direct role of NRP2 in epithelial-mesenchymal transition and highlight a cross-talk between neuropilin-2 and TGF-β1 signaling to promote cancer progression. These results suggest that neuropilin-2 fulfills all the criteria of a therapeutic target to disrupt multiple oncogenic functions in solid tumors.  相似文献   

5.
MicroRNA     
  相似文献   

6.
7.
Disappearance of E-cadherin is a milestone for epithelial-mesenchymal transition (EMT), found both in carcinomas and in some fibrotic diseases. We have studied the mechanisms of EMT in oral squamous cell carcinoma (SCC) cells isolated from primary tumor (43A) and its recurrent tumor (43B). Whereas the cells from primary carcinoma displayed a typical phenotype of squamous epithelial cells including E-cadherin and laminin-332 (laminin-5), cells from recurrent tumor expressed characteristics of dedifferentiated, EMT-experienced tumors. 43B cells expressed E-cadherin repressors ZEB-1/deltaEF1 and especially ZEB-2/SIP1, which therefore appear as candidates for endogenous EMT in these cells. Differences between endogenous and exogenous EMT were assessed by transfecting 43A cells with SNAIL cDNA. SNAIL-transfected cells showed complete EMT phenotype with fibroblastoid appearance, vimentin filaments, E-cadherin/N-cadherin switch, lack of hemidesmosomes and, as a new feature of EMT, lack of laminin-332 synthesis. Upregulation of ZEB-1 and ZEB-2 was evident in these cells, suggesting that SNAIL can regulate these E-cadherin repressors. New monoclonal antibodies against SNAIL showed nuclear immunoreactivity not only in the SNAIL-transfected cells but also in carcinoma cells lacking production of Lm-332 and showing signs of EMT. These results suggest that changes in the epithelial cell differentiation program and EMT in SCC cells can result from the interplay among several E-cadherin repressors; however, SNAIL alone is able to accomplish a complete EMT.  相似文献   

8.
9.
Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133− cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133− cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133− cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.  相似文献   

10.
Here we studied the cellular mechanisms of ursolic acid's anti-bladder cancer ability by focusing on endoplasmic reticulum stress (ER stress) signaling. We show that ursolic acid induces a significant ER stress response in cultured human bladder cancer T24 cells. ER stress inhibitor salubrinal, or PERK silencing, diminishes ursolic acid-induced anti-T24 cell effects. Salubrinal inhibits ursolic acid-induced CHOP expression, Bim ER accumulation and caspase-3 activation in T24 cells. Ursolic acid induces IRE1–TRAF2–ASK1 signaling complex formation to activate pro-apoptotic ASK1–JNK signaling. We suggest that ER stress contributes to ursolic acid's effects against bladder cancer cells.  相似文献   

11.
The inhibition of the 26S proteasome evokes endoplasmic reticulum stress, which has been shown to be implicated in the antitumoral effects of proteasome inhibitors. The cellular and molecular effects of the proteasome inhibitor—bortezomib—on human colon cancer cells are as yet poorly characterized. Bortezomib selectively induces apoptosis in some cancer cells. However, the nature of its selectivity remains unknown. Previously, we demonstrated that, in contrast to normal fibroblasts, bortezomib treatment evoked strong effect on apoptosis of breast cancer cells incubated in hypoxic and normoxic conditions. The study presented here provides novel information on the cellular effects of bortezomib in DLD-1 colon cancer cells line. We observe twofold higher percentage of apoptotic cells incubated for 48 h with 25 and 50 nmol/l of bortezomib in hypoxic conditions and four-, fivefold increase in normoxic conditions in comparison to control cells, incubated without bortezomib. It is of interest that bortezomib evokes strong effect on necrosis of DLD-1 colon cancer cell line. We observe the sixfold increase in necrosis of DLD-1 cells incubated with 25 or 50 nmol/l of bortezomib for 48 h in hypoxia and fourfold increase in normoxic conditions in comparison to adequate controls. We suggest that bortezomib may be candidates for further evaluation as chemotherapeutic agents for human colon cancer.  相似文献   

12.
13.
14.
Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.  相似文献   

15.
目的研究AEG-1在大肠癌组织和细胞中的表达,探讨AEG-1通过调控上皮间质转化和耐药参与大肠癌的进展。方法采用qRT-PCR检测AEG-1在大肠癌组织和细胞中的表达,统计AEG-1对大肠癌患者生存率的影响,分析其在不同癌症分期患者中的表达差异,并分析AEG-1表达量与大肠癌诊断敏感性的关系。采用体外实验将si-NC、pc-DNA-NC、si-AEG-1、pc-DNA-AEG-1转染到大肠癌SW116和LOVO细胞中,然后通过qRT-PCR检测转染效率以及AEG-1在两细胞系中的表达情况。采用CCK-8和克隆形成实验检测AEG-1对大肠癌细胞增殖的影响;采用流式细胞术检测转染后上皮间质转化和耐药情况的变化;采用Western blotting检测转染后上皮间质转化和耐药相关蛋白N-cadherin、E-cadherin、MRP的变化情况。结果 77例大肠癌患者组织中AEG-1表达水平明显高于对照组。浸润T3+T4期的患者中AEG-1的表达水平高于浸润T1+T2期患者。Ⅲ+Ⅳ期患者中AEG-1的表达水平高于Ⅰ+Ⅱ期。AEG-1高表达组患者OS时间明显低于低表达组。AEG-1表达量与大肠癌诊断敏感性之间呈显著正相关。在LOVO细胞系中,降低AEG-1表达后其细胞活力、侵袭力明显降低,同时间质细胞标志蛋白N-cadherin、上皮细胞标志蛋白E-cadherin、多药耐药相关蛋白MRP表达量降低。在SW116细胞系中,过表达AEG-1后上皮间质转化、耐药相关蛋白表达量显著升高。结论 AEG-1在大肠癌组织和细胞中的表达量明显上升,AEG-1通过调控上皮间质转化和耐药参与大肠癌的发生发展,为大肠癌的治疗提供了新的理论依据和新的靶点。  相似文献   

16.
Solid tumors commonly contain regions with glucose-starved and hypoxic conditions. Tumor cells under the adverse conditions can survive through the stress response, such as cell cycle arrest. In this study, we found that the stress conditions stimulated nuclear accumulation of proteasomes, large multicatalytic protease complexes, in human colon cancer HT-29 cells. The nuclear proteasome levels both in amount and in activity were increased approximately 4 and 2 times by glucose starvation and hypoxia, respectively. No changes were detected in the total expression levels of proteasome. The nuclear proteasome accumulation was also observed in ovarian cancer A2780 cells under glucose starvation, suggesting that this response was regardless of the origin of cancer cells. Our results indicate that the nuclear proteasome distribution is enhanced by glucose starvation and hypoxia, and suggest that the proteolysis by proteasome in the nucleus may play roles in the stress response of solid tumor cells.  相似文献   

17.
Members of the miR-200 family of micro RNAs (miRNAs) have been shown to inhibit epithelial-mesenchymal transition (EMT). EMT of tubular epithelial cells is the mechanism by which renal fibroblasts are generated. Here we show that miR-200 family members inhibit transforming growth factor-beta (TGF-beta)-induced EMT of tubular cells. Unilateral ureter obstruction (UUO) is a common model of EMT of tubular cells and subsequent tubulointerstitial fibrosis. In order to examine the role of miR-200 family members in tubulointerstitial fibrosis, their expression was investigated in the kidneys of UUO mice. The expression of miR-200 family miRNAs was increased in a time-dependent manner, with induction of miR-200b most pronounced. To clarify the effect of miR-200b on tubulointerstitial fibrosis, we injected miR-200b precursor intravenously. A single injection of 0.5 nM miR-200b precursor was sufficient to inhibit the increase of collagen types I, III and fibronectin in obstructed kidneys, and amelioration of fibrosis was confirmed by observation of the kidneys with Azan staining. miR-200 family members have been previously shown to inhibit EMT by reducing the expression of ZEB-1 and ZEB-2 which are known repressors of E-cadherin. We demonstrated that expression of ZEB-1 and ZEB-2 was increased after ureter obstruction and that administration of the miR-200b precursor reversed this effect. In summary, these results indicate that miR-200 family is up-regulated after ureter obstruction, miR-200b being strongly induced, and that miR-200b ameliorates tubulointerstitial fibrosis in obstructed kidneys. We suggest that members of the miR-200 family, and miR-200b specifically, might constitute novel therapeutic targets in kidney disease.  相似文献   

18.
Hypoxia, the most common feature in the tumor microenvironment, is closely related to tumor malignant progression and poor patient’s prognosis. Exosomes, initially recognized as cellular “garbage dumpsters”, are now known to be important mediums for mediating cellular communication in tumor microenvironment. However, the mechanisms of hypoxic tumor cell-derived exosomes facilitate colorectal cancer progression still need further exploration. In the present study, we found that exosomes from hypoxic colorectal cancer cells (H-Exos) promoted G1-S cycle transition and proliferation while preventing the apoptosis of colorectal cancer cells by transmitting miR-210-3p to normoxic tumor cells. Mechanistic investigation indicated that miR-210-3p from H-Exos elicited its protumoral effect via suppressing CELF2 expression. A preclinical study further confirmed that H-Exos could promote tumorigenesis in vivo. Clinically, the expression of miR-210-3p in circulating plasma exosomes was markedly upregulated in colorectal cancer patients, which were closely associated with multiple unfavorable clinicopathological features. Taken together, these results suggest that hypoxia may stimulate colorectal cancer cells to secrete miR-210-3p-enriched exosomes in tumor microenvironment, which elicit protumoral effects by inhibiting CELF2 expression. These findings provide new insights on the mechanism of colorectal cancer progression and potential therapeutic targets for colorectal cancer.  相似文献   

19.

Background

Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines.

Methods

LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival.

Results

Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217?cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217?cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217?cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced.

Conclusion

Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated.  相似文献   

20.
The conserved TOR (target of rapamycin) kinase is part of a TORC1 complex that regulates cellular responses to environmental stress, such as amino acid starvation and hypoxia. Dysregulation of Akt-TOR signaling has also been linked to the genesis of cancer, and thus, this pathway presents potential targets for cancer chemotherapeutics. Here we report that rapamycin-sensitive TORC1 signaling is required for the S-phase progression and viability of yeast cells in response to genotoxic stress. In the presence of the DNA-damaging agent methyl methanesulfonate (MMS), TOR-dependent cell survival required a functional S-phase checkpoint. Rapamycin inhibition of TORC1 signaling suppressed the Rad53 checkpoint-mediated induction of ribonucleotide reductase subunits Rnr1 and Rnr3, thereby abrogating MMS-induced mutagenesis and enhancing cell lethality. Moreover, cells deleted for RNR3 were hypersensitive to rapamycin plus MMS, providing the first demonstration that Rnr3 contributes to the survival of cells exposed to DNA damage. Our findings support a model whereby TORC1 acts as a survival pathway in response to genotoxic stress by maintaining the deoxynucleoside triphosphate pools necessary for error-prone translesion DNA polymerases. Thus, TOR-dependent cell survival in response to DNA-damaging agents coincides with increased mutation rates, which may contribute to the acquisition of chemotherapeutic drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号